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ABSTRACT 

System reliability can be expressed in terms of the pattern of failure events 

over time. Assuming a nonhomogeneous Poisson process, and Weibull intensity 

function for complex repairable system failures, the degree of system deterioration 

can be approximated. Maximum likelihood estimators (MLEs) for the system Rate 

of Occurrence of Failure (ROCOF) function are presented. Evaluating the integral 

of the ROCOF over annual usage intervals yields the expected number of annual 

system failures. By associating a cost of failure with the expected number of 

failures, budget and program policy decisions can be made based on expected 

future maintenance costs. Monte Carlo simulation is used to estimate the range and 

the distribution of the net present value and internal rate of return of alternative 

cash flows based on the distributions of the cost inputs and confidence intervals of 

the MLEs. 
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L INTRODUCTION 

A. PURPOSE 

The purpose of this thesis is to combine system reliability theory with observed equipment 

failures and maintenance costs in order to make better informed overhaul policy decisions for Marine 

Corps ground combat equipment1. Techniques currently used by the Army and USMC for computing 

the economic useful life of ground combat equipment assume a linear relationship between cost and 

age or usage (US Army TACOM, 1985). Systems reliability theory provides techniques for estimating 

linear and non-linear failure probabilities which can be used to predict how long equipment will last. 

Based on field data, we can compute the expected number of system failures over specified intervals, 

and associate expected costs with the failures to determine optimal maintenance policies and overhaul 

intervals. This thesis presents a model that is designed to give decision makers, such as the Integrated 

Logistic Support Directorate (TLSD), a more informed method for determining annual depot level 

overhaul requirements based on the material condition of the equipment fleet and a reliability 

projection about its remaining useful life. The approach uses existing equipment historical 

maintenance data which is readily available through the Maintenance Data Analysis Center, Marine 

Corps Logistics Base, Albany, Georgia, together with the ITT Research Institute, Rome, New York. 

B. BACKGROUND 

In many instances, it has been shown that rebuilding principal end items of equipment (PEIs) 

costs much less than buying new. For example, during 1986, the Marine Corps Depot Maintenance 

Activities rebuilt M60A3 battle tanks at a unit cost of $186,000 as opposed to the acquisition cost of 

approximately $1.3 million (Boak, 1988). The decision when to overhaul equipment is made using 

a break-even analysis of the basic cash flow alternatives, namely; 1) "dcHnothing," meaning continue 

to perform field level, or ''minimal" repairs when the system fails, 2) overhaul, or 3) buy new. When 

the buy-new option is not a viable alternative due to program funding constraints, the issue of 

'The term "overhaul" in this thesis implies both depot rebuild programs, and the "Inspect and Repair Only As Necessary" 
(1ROAN) concept. 



overhaul intervals must be addressed Optimal overhaul intervals are determined by minimizing the 

total expected cost of ownership over the life cycle of the system (Ascher and Feingold, 1984). 

Currently, overhaul/rebuild intervals for Marine Corps PFJs are recommended by the 

contractor during the system acquisition phase (Boak, 1988). While these design estimates are likely 

to be accurate, a comparison based on actual equipment usage and maintenance data several years after 

the system has been in use may provide more meaningful intervals (Blanchard, 1992). This 

comparison might be thought of as a check, or a "tracking signal," to the contractor's estimate. The 

time to overhaul based on system deterioration may be different than the initial estimates, and provide 

an opportunity for cost savings in overhaul programs. The techniques provided in this thesis give a 

quantitative "snapshot" of where a PEI is in its material life cycle, which is then used to predict future 

failure probabilities. Knowing the expected failure profile for a system policy decisions can be made 

about maintenance and overhaul intervals. 

C   BENEFITS OF THE STUDY 

The principal motivations for this thesis include: 

1.   The Need for Quality Infomiatioii in Resource Allocation Decisions 

DoD is faced with downward budget trends, but must continue to maintain high levels of 

operational readiness to meet the conflicts created by a turbulent world environment. In order to meet 

mission requirements, optimum use must be made of equipment resources, by applying analytic 

techniques to decision making and planning. Accurate information is needed to make cost-effective 

decisions about maintenance policies. 

In some cases, it may not be economically desirable to replace low quantities of (repairable) 

equipment systems, due to excessive startup and production costs associated with low production 

quantities. In that situation, it may be more cost-effective to overhaul or "rebuild" the existing 

repairable systems (US Army TACOM, 1985). The decision when to overhaul/rebuild a repairable 

system is typically done using break-even analysis and Net-Present-Value (NPV) Cash-Flow 

techniques (Blanchard, 1992). However, in order to conduct a meaningful NPV analysis, future 

expected costs are required. Much of the literature in overhaul/replace decision-making assume linear 

maintenance cost models as the system ages (Perry, 1967). For example, the US Army Tank and 



Automotive Command (TACOM) has an extensive Tactical Wheeled Vehicle Useful Life 

Determination Program (TWVULDP) which recognizes that system reliability decreases with age 

(implying that failure rates increase with age), however their maintenance cost model uses linear 

relationships. This thesis shows that the failure rate of deteriorating systems is not always linear, and 

provides an alternate approach to predict costs associated with expected failures. 

2.   Improved Marine Coips Oveihaul/Rebuild Planning Criteria 

The model presented in this thesis gives budget and program planners a way to characterize 

quantitatively the status of equipment in their life cycle using existing historical maintenance data. 

The Marine Corps uses several conflicting sources that provide planners with estimates on when to 

conduct depot level overhaul or replace ground combat equipment systems. Maintenance management 

planners refer to a technical instruction entitled "Replacement and Evacuation (R&E) Criteria; U.S. 

Marine Corps Equipment" (TI-4710-14/1, 1988). The R&E technical instruction provides usage 

criteria that determine when an item may become due for depot level overhaul/rebuild Input from 

the Fleet Marine Force owning units (based on the 11-4710 criteria) is the primary document that 

drives the master work schedule requirements at the depot maintenance level. Overhaul intervals for 

the R&E program criteria come from contractor recommendations. The differences in useful life 

estimates can be quantified for the M998 Ffigh Mobility Multipurpose Wheeled Vehicle (HMMWV), 

which is the system analyzed in the case study presented in this thesis. 

The TI-4710-14 gives 90 months (7.5 years) or 20-48,000 miles (peacetime usage) as the 

criteria for nomination of a HMMWV for depot maintenance. In contrast, the Marine Corps Cost 

Factors Manual (MCO P7000.14K, 1991), used by budget planners, program managers and activity 

comptrollers indicates a 48 month (4 years) "useful life" before rebuild for the HMMWV. The U.S. 

Army TACOM TWVULDP Modernization Plan estimates a fourteen year useful life for the 

HMMWV, which also is used by Marine Corps tactical wheeled vehicle Program Managers. Another 

source, the US Marine Corps Concepts and Issues 1994, indicates a seventeen year HMMWV useful 

life that can be extened to 30 years through an extended service life program (ESP). Of course, 

overhaul versus buy new decisions are not made based on single estimates in such publications, but 

through detailed cost analysis. Clearly, there is a need to refine some of the numbers used in the 

assumptions for the cost models, particularly the range of useful life of our combat equipment systems. 



Further the opportunity cost of performing an overhaul or replacement too early in the system life 

cycle, given that a system has considerable "useful life" remaining, may not be acceptable. This thesis 

provides an alternate approach that can complement these sources and provide additional clarifying 

information with which to make decisions. 

3. Provide Accurate Master Woik Schedule Requirements for POM Input 

Budgeting and scheduling overhaul requirements for the five year Program Objectives 

Memorandum (POM) is a highly uncertain process. Rebuild requirements described above must be 

translated into POM data, as well as the Depot Maintenance Activity (DMA) Master Work Schedule 

for production operations in the intermediate term. Accurate input data is vital to reducing variability 

in budgeting and production schedule planning. Better forecasting data can allow for Material 

Requirements Planning (MRP) to be done which could radically improve the quality of Depot 

Maintenance production, significantly reduce turn-around-times, and reduce inventory costs. MRP is 

not presently a part of the Depot Master Work Schedule planning process, because of difficulties in 

forecasting annual rebuild requirements. Currently, replacement part requirements are not determined 

until the equipment item arrives at the depot and is inspected. Not-in-stock requirements have to be 

requisitioned, which contributes to logistic and administrative delay time in the depot maintenance 

cycle. 

Timely forecasting for budget planning is essential to develop the Depot Master Work 

Schedule and material requirements planning. This thesis provides a method for using existing 

historical maintenance data to identify a usage interval when an item is actually in its deterioration 

phase. It can be projected several years in advance with relative confidence; then used for aggregate 

budget planning. Further, it can be used to aid Material Requirements Planning (MRP) in the Master 

Work Schedule. 

4. An Alternative Approach That Incorporates Reliability Theory 

The methodology reviewed in the literature regarding useful life estimates can be categorized 

into either "pure" reliability analysis, or "pure" cost analysis. Perry (1973) combines reliability 

analysis with operational availability to determine a measure of "effectiveness" of a system. Decisions 

about system replacement can then be made on a basis of both cost and effectiveness over time. 

Perry's model assumes a constant failure distribution for mobility items. Crow (1975) argues, as does 



most of the reliability literature (e.g. Ascher and Feingold (1984)), that complex repairable systems 

such as vehicles experience deterioration with system age, and that after a certain point they become 

too unreliable to continue in service without undergoing rebuild or replacement. The model presented 

in this thesis seeks to incorporate reliability theory with maintenance cost analysis in order to 

determine a usage interval where a decision should be made about when to rebuild or replace a 

system Using a combination of cost effectiveness and operational availability provides an alternate 

basis for decision making. 

5.   Validate Other Models 

The use of reliability analysis can be used to validate conclusions drawn from other sources 

that are used for major program decisions. For example, the US Marine Corps is currently involved 

with several extended service life programs for ground combat equipment systems (HQMC, 1994). 

The ESP program performance can be evaluated after a sufficient amount of time has elapsed (and 

sufficient data is collected) using the techniques addressed in this thesis. The program's projected life 

extension can be compared to the actual equipment failure patterns after rebuild, which are used to 

estimate future failure patterns. In other words, the technique to be presented provides a way to 

quantitatively measure the effectiveness of the ESP. Lastly, this thesis provides a way to refine the 

linear cost versus age assumption in models such as the US Army TACOMs Tactical Wheeled 

Vehicle Useful Life Determination Program The model developed here would allow TACOM to 

more accurately predict costs during the deterioration phase of equipment when failure costs are not 

linear. 

D.   SCOPE, ASSUMPTIONS AND LIMITATIONS 

1.   Scope 

The scope of this thesis entails an application of reliability theory for complex repairable 

mechanical systems. Analysis of historical maintenance data on existing equipment will lead to 

expected costs associated with the "do-nothing" (rninimal repairs policy) alternative for decision 

making, and is used to project future mainenance costs associated with keeping the system "as is." 

Maintenance costs associated with new programs or post-ovanaul/upgrades are not derived, as these 

are available through the appropriate program office. For the purposes of this thesis, these costs are 



accepted as given, and used as the alternative to doing nothing. The case analysis studies the M998 

High Mobility Multipurpose Wheeled Vehicle (VA ton truck), which is an equipment item common 

to all types of Marine Corps units. The end result is to provide a means for predicting future 

maintenance costs based on an expected number of critical system failures during specified intervals. 

These failures can then be converted to costs, either in terms of replacement parts, direct-labor and 

overhead, or in terms of the downtime (operational un-availability). As such, other costs such as 

research, design, test and production are considered to be sunk costs and are not included. 

2.    Assumptions 

The underlying implication of declining DoD budgets is that the Marine Corps will most likely 

be keeping its existing equipment for longer than the programs were originally planned for. The 

periods following the Korean and Vietnamese wars saw reductions in defense spending (Schick, 1990), 

where weapons and equipment systems remained in the defense inventory well beyond their useful 

or "book" life. Common examples are the Vietnam vintage CH-46 Medium Lift Helicopter, which 

has been in service for over 30 years, and the M151 QA ton jeep), which was in service for over 15 

years. The M151's "design life" was six years (TACOM TWVULDP, 1985). 

The decision of whether to replace or overhaul depends on how much useful economic life 

remains in an existing system based on the age and condition of the system, and on the cost of buying 

new. Reprocurement costs for low quantities of replacements (due to loss, accidents or combat action) 

may be extremely high for low production runs. Therefore, periodic overhaul may be the desired 

solutioa 

Other technical assumptions regarding general operation of the system and mathematical 

models are discussed in the applicable sections of this thesis. In general this thesis assumes: 

That the analysis of a "complex repairable mechanical system" 

The system is sufficiently complex such that no individual component or subsystem 

is the dominant cause of system failure. A Pareto analysis of part failures is used to 

support this assumption. 

Critical components are independent and serially connected, such that failure of any 

critical component causes a system operational mission failure. 



The reliability of the entire system is not significantly improved by a minimal repair, 

i.e., replacement of a single part (Crow. 1975). 

That overhaul/rebuild restores the stem to "same as new" or ready for issue condition 

with a reliability function nearly the same as a new system/replacement. The U.S. 

Army TACOM uses an 80% factor to estimate the effects of overhaul. That is, 

overhaul will increase the life of an item by 80% of the original economic useful life 

of an item 

• Repairs are not necessarily instantaneous, but the majority of the "downtime" is due 

to aaministrative or logistics delay time. 

The systems are in continual usage. Further, to predict future costs, annual mileage 

is simulated using the Monte Carlo technique, based on the distribution of available 

usage data Since future mileages can not be known, average annual usage for like 

systems, organizations or geographical locations is used to predict future failures. 

• Mean active maintenance time and mean corrective maintenance times are constant 

for given tasks, and will generally be the same for any program alternative. 

• The effects of Product Improvement Programs, major system modifications or "Block 

Upgrades" are not considered in the analysis, since data is not specifically kept on 

"before" and "after" effects of overhaul for ground combat systems. 

The analyst interpreting the data results is experienced with the MIMMS database and 

general statistical concepts. 

3.   limitations 

Conclusions drawn from the techniques involved in this thesis are limited to the quality of the 

field maintenance data. In this case, data from the Marine Corps Integrated Maintenance Management 

System (MIMMS) database is used for the analysis. MIMMS is subject to data inconsistencies due 

to lack of training or supervision of input clerks at the field units. Techniques are used to eliminate 

bad data and improve the confidence of the analysis. Data was also available from the TACOM 

Sample Data Collection (SDC) in support of the Tactical Wheeled Vehicle Useful Life Determination 

Program, but was not used for the complete analysis since failure times were not available. 



Secondly, care must be taken regarding the mathematical assumptions presented in the model. 

Probabilistic modeling presented in the next chapters is based on highly simplified assumptions. "Real 

world" factors must be taken into consideration when interpreting the results of the trend data. Ascher 

and Feingold (1984) present several important considerations for using reliability models. 

E,   ORGANIZATION OF THE THESIS 

The thesis is organized into six chapters. Chapter II introduces reliability theory and outlines 

the methodology for determining the Rate of Occurrence of Failures for a series of failure points. It 

further describes the LaPlace Test statistic which indicates decreasing, constant, or increasing trends 

in the time between failure data. Chapter HI discusses the MMMS database, and outlines the steps 

for setting up the raw data for statistical analysis. The output data can be manipulated using a 

spreadsheet package, such as Microsoft Excel on a personal computer. Chapter IV is an explanation 

of the model, using the functional form of the time variant ROCOF presented in Sadlon (1993) and 

Crow (1975). Chapter V is a case application of the model given sample data on the M998 

HMMWV. Chapter VI provides conclusions and recommendations. 



IL RELIABILITY OF REPAIRABLE SYSTEMS 

A.   BACKGROUND 

This chapter outlines repairable system reliability concepts, and provides some of the 

probability models and relationships used to describe system failure processes. By projecting 

expected future system failures, cost streams associated with the failures can be computed and 

used to make decisions about maintenance policies. Mathematical derivations are not provided 

in this chapter, rather, the final resulting models or formulas to be used for the analysis are 

presented. Sources of the models are provided if further clarification of the proofs or derivations 

are required. 

In reliability theory, the concept of a part is different from that of a repairable system 

It is important to begin by distinguishing the two concepts. The basic difference is that a part can 

only fail once, but a repairable system can fail many times (Ascher and Feingold, 1984). 

Therefore, the assumptions and mathematical models used to describe system failures are 

somewhat different from those used to describe failures of parts (which include non-repairable 

components and subassemblies). Although the models for system failures are more complicated 

than for part failures, the system failure process can basically be modeled according to the arrival 

pattern of the failure incidents, assuming a sufficiently complex repairable system The failure 

pattern is generally described by the number of failures in a specified interval, and the duration 

between failures in the interval. 

The main concept used to describe the failure patterns is called the "Rate of Occurrence 

of Failures," (ROCOF) denoted as p(t). It is a time variant rate used to describe the reliability 

phases of the system life-cycle. The ROCOF is also described as the failure intensity, force of 

mortality (for non-repairable components), or peril rate (when describing repairable systems) in 

the literature. Maximum likelihood estimators, confidence bounds and hypothesis tests are 

provided which are used to estimate the ROCOF for repairable systems. Given the ROCOF, an 

expected number of failures can be forecasted for a specified future interval of time or usage. 

This function is used to make maintenance policy decisions based on failure costs in terms of 

dollars and/or readiness. Finally, the estimated parameters of the ROCOF can be used in models 

that gives the "optimal" expected useful life, and one that yields the optimal point in a system life- 



cycle where the tradeoff between the cost of maintenance ("minimal repairs") and overhaul costs 

are rninimrzed (Barlow and Proschaa 1965, and Dhilloa 1988). 

B.       TERMINOLOGY AND DEFINITIONS 

This section defines the terminology to be used throughout this paper. Definitions and 

parameters vary throughout the literature which makes the research in some cases confusing. The 

primary sources used for the reliability parameters in this paper are drawn from Ascher and 

Feingold (1984), and Sadlon (1993). Other major sources include Barlow and Proschan (1965), 

Tobias and Trindale (1986), Dhillon (1988), and Crow (1975), however the latter four texts use 

some different terms, definitions, and notations for parameters. For consistency, Ascher and 

Feingolds (1984) terminologies and notations are primarily used. 

1. Complex Repairable System 

A complex repairable system consists of a large number of independently acting 

components, which, after failure to perform at least one of its required functions can be restored 

to performing all of its required functions by any method, other than replacement of the entire 

system (Ascher and Feingold, 1984). This thesis also distinguishes between "critical" components 

and non-critical components in the analysis of the actual data presented in Chapter V. Failure of 

a critical component results in the system not being able to perform its combat operational mission 

(however, failure of non-critical components will contribute to total maintenance costs). Crow 

(1975) states that if the system is sufficiently complex, consisting of many components, that 

replacing a single component may not decrease the system failure probability significantly. For 

example, replacement of a starter would not alter the probability of brake failure immediately after 

the starter's replacement. Crow further states that the nonhomogeneous model assumes 

idealistically that the system reliability (specifically the ROCOF) does not change at all after 

"minimal repairs." 

2. Ovemaul/ Rebuild and IROAN Policies 

The Marine Corps defines the term rebuild as: 

...that maintenance technique used to restore an item to a standard as near as 
possible to original or new condition in appearance, performance and life 
expectancy. This is accomplished through a maintenance technique or complete 
disassembly of the item, inspection of all parts or components, repairs or 
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replacement of worn or unserviceable elements using original manufacturing 
tolerances and/or specifications and subsequent reassembly of the items. 

(Marine Corps Order P4790.2J994).  For the purposes of this thesis, the terms overhaul and 

rebuild are used interchangeably. Due to fiscal constraints in the past several years, depot level 

rebuild programs have not been available for most ground combat systems. Rather, a concept 

known as "Inspect and Repair Only As Necessary" (IROAN) is being employed (Boak, 1988). 

The same directive defines IROAN as: 

...that maintenance technique which determines the minimum repairs necessary 
to restore equipment, components or assemblies to prescribes maintenance 
serviceability standards by utilizing all available diagnostic equipment and test 
procedures in order to minimize disassembly and parts replacement. 

Decision makers should be aware that overhaul does not guarantee the item will have necessarily 

the same reliability as a newly manufactured item Ascher and Feingold (1984) uses the term 

"same as new" to mean that the overhauled system's reliability does not imply the original system 

reliability. For example, a high failure intensity for a brand new system may be observed during 

burn-in or debugging. In that case, he calls the condition "bad as new." Further, Lee, Puzzuoli 

and Hoogterp (1976) use simulation to show the effects of both the degree and time of overhaul 

on U.S. Army tactical wheeled vehicles. They conclude that when a vehicle is overhauled, 

meaning components with less than 60% of their life remaining were replaced, that the item was 

returned to about 90% of its original reliability (based on reliability when the system was brand 

new), not counting the effects of burn-in. As stated in Chapter I, the Army generally uses a factor 

of 80% of the original useful life to be the estimated life-extension after overhaul/rebuild. 

3. Reliability 

Blanchard (1992) defines reliability as 

...the probability that a system or product will perform in a satisfactory manner 
for a given period of time when used under specified operating conditions. 

Mathematically, reliability is expressed as the probability that an item will not fail during a 

specified interval, or 

R(t)=l-F(t) (2_1) 
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where F(t) is the cumulative probability function providing probability that an item will fail by 

time t. Ascher and Feingold (1984) emphasize that the models for part and system reliability 

analysis are different, and that the failure processes for parts and systems cannot be interchanged. 

The basic difference is that a system can fail many times, and be restored with minimal repairs, 

while a part can only fail once. 

4.   Failure and "Failure Rate" 

A failure is an event that renders a system incapable of performing any of its functions 

is a satisfactory manner. The failure rate, normally expressed as X, is the rate at which failures 

occur in a specified interval (Blanchard, 1992). The period between failure arrivals is typically 

called the "Mean Time Between Failures" (MTBF). MTBF is a suitable measure when the system 

failure intensity is constant. In this case, failures are described as independent, identically 

exponentially distributed random variables, characterized by the homogeneous Poisson process. 

However, the reliability literature (Barlow and Proschan (1967), Crow (1975), Ascher and 

Feingold (1984), Dhillon (1988) and Sadlon (1993)) shows that failure rates may decrease, remain 

constant or increase with time. A more appropriate measure for system reliability is described by 

Ascher and Feingold (1984), which is a time derivative of the expected number of failures over 

an interval. They refer to the ROCOF as the probability that a failure, not necessarily the first, 

occurs in an interval (0, t). The ROCOF is denoted as p(t). If V(t) = E[N(t + dt) - N(t)], where 

[N(t)] is the number of failures occurring in (0, t), then let p(t) = dV(t)/dt. The ROCOF is 

generally recognized as the process that describes the typical system "bathtub curve" shown in 

Figure 2.1. 

,    Burn-in Phase Useful Life Deterioration 

1     Debugging (constant failure (increasing failure 

intensity) intensity) 
tr 
u. 
O 
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o jS 
tc 
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time 

Figure 2.1 Repairable System Bathtub Cuive 
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The literature on systems reliability normally uses the Weibull probability distribution to 

characterize system failures the failure intensity during the burn-in and the deterioration phases. 

Ascher and Feingold (1984), Dhillon (1988), Tobias and Trindale (1986), and Sadlon (1993) all, 

describe the time variant ROCOF for a nonhomogeneous Poisson process (NHPP) in the form: 

p(t)= A.ßtP-' (2-2) 

The NHPP is described in Section 6.b. to follow. Note the special case when p(t) is 

constant, then the parameter X is the ROCOF of the homogeneous Poisson process, and the simple 

reliability function R(t) = e'*1 is used to calculate probabilities of mission success (Ascher and 

Feingold, 1984). Equation (2-2) provides the basis for the specific ROCOF function derived from 

the Weibull distribution which is introduced in the next section. 

5.   Weibull Distribution 

Throughout the literature, the Weibull distribution is commonly used to model the 

reliability of complex repairable systems (Tobias and Trindale, 1986; Sadlon, 1993). The Weibull 

distribution is assumed to be an appropriate model for reliability of mechanical ground combat 

systems discussed in this thesis. It can model the burn-in, useful life, and deterioration phases of 

repairable systems. The Weibull distribution is a two-parameter, more generalized form of the 

exponential distribution, which is used in reliability models to describe the duration between 

failure events (Weibull, 1951). The Weibull distribution allows for a change of failure intensity 

over time. Depending on the shape/slope parameter (ß), the Weibull distribution characterizes 

other failure distributions such as the Gamma, Raleigh, Extreme Value, or Normal distributions. 

This makes it a versatile function that can represent a family of various distributions. Table 2.1 

summarizes special cases of the Weibull distribution for various values of the shape parameter (ß). 
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Shape Parameter Value Corresponding PDF ROCOF Description 

0 < ß < 1 Gamma Exponentially decreasing from 

00 

ß=l Exponential Constant 

ß— 1.5 Log-normal (approx) Rises to peak and then 

decreases 

ß = 2 Raleigh Linearly increasing 

3<ß<4 Normal (approx) Rapidly increasing 

ß>10 Similar to Type I extreme 

value 

Very rapidly increasing 

Table 2.1 Weibull Probability Distribution Properties 

For systems reliability modeling the two-parameter Weibull distribution is used, since it is 

reasonable to assume that the lower bound on system life is zero.2 The probability density 

function of the Weibull distribution is defined as: 

(2-3) f(t) = A-ßtP"1 e i ~-xtp 

for t > 0 , and f(t) = 0 elsewhere. 

The Weibull cumulative probability distribution function is: 

F(t) =l-e"XtP (2-4) 

^The three-parameter Weibull would include a "location parameter" which is the expected minimum value of the random 
variable.   In life-cycle reliability modeling, the minimum value is logically defined as zero, i.e., the minimum life of a system. 
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The probability of failure in the next instant of time, over the interval (t, t + dt) given the item 

has survived to t is called the hazard rate (for repairable systems, Ascher and Feingold call it the 

peril rate).   The hazard or peril rote is expressed as: 

oft) =    A*) (2-5) W;     1-F(t) 

If fft) is the Weibull probability density function, then equation (2-5) yields the ROCOF: 

p(t) = ?ißtP-' (2"6) 

The ROCOF is used to model the failure intensity of repairable systems. Equation (2-6) also 

provides the basis for predicting the expected number of failure to time t. 

6.    Point Process Models 

The ability to measure and predict a system's reliability can be described by the pattern 

of failures. This section describes two types of point processes that can be used to model a 

systems failure process. The failure process, depicted in Figure 2.2, is characterized by point 

events occurring in a continuum such as operating time, or mileage in the case of vehicles 

(Sadlon, 1993). A point process is further defined by the failure event and the observed intervals 

between successive events. 

 ©TISR 
 ©TTSF,,.!. 
-® TTSF,  

-€>TTSF,. 
^»TESF,. 

<-  TBF, -H<-  TBF2    ->|<-TBF3 ...    TBF^I <-TBFn-> 

Figure 2.2 Repairable System Failure process 

time—» 
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The system failure events are denoted by the (© ) symbol. The total time to the z'-th 

system failures (for / = 1,2, 3...n) is denoted as TTSFj, and the time between the z-th failure and 

the (i + l)st failure is defined as TBFj. The last occurrence of a system failure is denoted as 

TTSFn. The TTSFjS are obtained by forming the cumulative sums of the interarrival times. In 

the case of the MMMS database, the TTSF is simply the meter reading at failure3. 

Generally, the number of independent observations occurring within an interval are 

described by the Poisson distribution with parameter u, (denoted with subscript to distinguish it 

from the constant of the Weibul intensity function) while the durations between the intervals are 

described by independent exponential variables with parameter u. This notion implies that the 

average number of failures per unit time interval is u, and the mean duration between successive 

intervals is 1/u (Neter, Wasserman, Whitmore, 1993). Note that, as stated in the previous section, 

use of the two-parameter Weibull distribution allows for u to vary with time. Knowing the 

TTSFs, a point process can be modeled to describe the failure patterns. This thesis is concerned 

specifically with the HPP and NHPP point process models. 

a. Homogeneous Foisson Process 

The homogeneous Poisson process can be used to model a system whose failures 

are independent and identically exponentially distributed, and which show no tendency to increase 

or decrease. A mechanical system which is in its "useful life" or "normal" phase usually show 

an HPP failure characteristic, as failures occur randomly. Crow (1975) points out however, that 

many complex mechanical repairable systems, such as vehicles, tanks, or fork-lifts, generally 

experience a deterioration phase and may seldom achieve the equilibrium state of a homogeneous 

Poisson process (HPP). 

b. Nonhomogeneous Poisson Process (NHPP) 

The NHPP differs from the HPP in that the ROCOF (p(0) varies with time rather 

than being constant, implying that the failure times are not necessarily identically distributed 

(Ascher and Feingold, 1984). They further show that the expected number of failures V(t) in any 

interval (t, t + dt) is given as: 

^ assumption is tot the müeage on the Equipment Repair Order (ERO) close date is very close to the mileage at Mure, 
even though inreality this vrouldnot normally be the case. Chapter m details the assumptions about the MIMMS database. 
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V(t) - E[N(t +dt) - N(t)] = J,+*p(t)dt (2-7) 

Substituting equation (2-6), the functional form of the time variant of the ROCOF, p(t), into 

equation (2-7), the expected number of failures during an interval can be evaluated as a definite 

integral: 

V(t)=^t+* (2-8) 

Equation (2-8) is the primary interest for developing the future life-cycle maintenance cost 

model used in this thesis. Equation (2-8) yields the expected number of failures in the interval 

(t, t+dt) hours (or miles) for the system This equation can be evaluated over specified intervals, 

and multiplied by expected costs associated with failures in order to derive maintenance policies. 

C    TREND ANALYSIS 

There are several methods for determining whether a system shows improving, constant, 

or deteriorating trends in the time between failures. Trend analysis is useful in that it provides 

a "snapshot" of where the system is in its life-cycle, and the degree to which the peril rate of the 

system is changing. Trend analysis also provides the basis for classifying a data series as HPP 

or NHPP. Ascher and Feingold (1984) provides several methods for trend testing, namely: 1) 

graphical plotting techniques, 2) test statistics, and 3) the ML-HDBK-189 (1981) test. Graphical 

plotting and the LaPlace trend test statistic described by Ascher and Feingold (1984) are used for 

this analysis. 

1. Graphical Hotting 

Graphical plotting is useful as a visual check of the condition of a system's failure profile. 

Constructing a graphical plot of cumulative operating time against the cumulative number of 

failures illustrates the difference in deteriorating or improving trends. A plot concave down with 

respect to the origin indicates an improving system, due to increasing spacing between the system 

failure events. Conversely, a plot convex (up) with respect to the origin indicates a deteriorating 

system The graph shown in figure 2.3 illustrates the relationship between the expected number 

of cumulative failures and operating time, for values of ß = 1, > 1 and < 1. The curves illustrate 
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the three possible life-cycle phases described by the bathtub curve, and are useful when 

interpreting failure plots and trends over different intervals in the system's life. 

Age/ Usage 

Figure 2.3 Expected Number of Failures over Tune for 
Various Values of ß 

2.    LaPlace Test Statistic 

The primary indicator used in this thesis to determine whether a system is improving, in 

a steady state, or deteriorating is through the use of the LaPlace test statistic. The LaPlace test 

statistic indicates trends in the successive interarrival time data. The LaPlace test statistic for 

individual systems can be computed directly from existing MEMMS-AIS historical data. Further 

discussion on the actual data is presented in Chapter V. 

To calculate the test statistic (U), a system is operated until a prespecified number of 

failures have occurred, or up until a specified time. Data in the first case is called failure 

truncateddata, the latter case is called time truncated data (Crow, 1975). The interarrival times 

(TBFj) are observed, based on the start time of the data interval. Recall that the TTSFiS are the 

observed failure times measured from the origin. Let TTSFn denote the n-th observed failure time 

in the interval. Sadlon (1993) gives the LaPlace test statistic for a process with V failures as: 
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u 
JETTSF^n-l) 

TTSFn n 

(2-9) 

Tmyi/(12(n-l)) 

The conclusions drawn from the test are: 

• U approximately equal to zero indicates lack of trend   Assume HPP. 
• U > 0 indicates that interarrival time trends (TBFj) are decreasing, indicating 

system deterioration. 
• U < 0 indicates that interarrival time trends (TBFj) are decreasing, indicating 

system improvement, or reliability growth (such as debugging or "burn-in"). 

After system failure data have been collected and trend tests conducted, maintenance 

policies based on the condition of the equipment can be determined. For example, if the number 

of system failures is relatively constant (suggesting U = 0 and HPP failures), and that sufficient 

program dollars have been allocated for "routine" operations and maintenance, then the status quo 

maintenance policies are usually acceptable. However, as the number of system failures over the 

intervals increase with age, then overhaul or replacement may be considered more desirable 

alternatives. The status quo maintenance policy (performing minimal repairs each time the system 

fails) will generally have linear cumulative annual costs during the useful life of the system 

However, as the system begins to deteriorate, the costs can increase linearly or exponentially with 

time depending on the failure intensity, or ROCOF. The value of the LaPlace test statistic can 

be used to interpret how rapidly the system is deteriorating. As the value of U increases, the slope 

of the ROCOF increases, indicating that the system is deteriorating rapidly. 

The next section describes the Maximum Likelihood Estimators (MLEs) used to 

determine the shape or slope parameter ß, and the scale or characteristic life parameter X for the 

failure process model described in equation (2-6). Before the estimate V(t) can be applied to 

policy decisions, the values for the parameters X and ß must be estimated 

D. MAXIMUM LIKELIHOOD ESTIMATORS WMX AND ß 

The LaPlace trend test statistic indicates the trend in the times between failures for a 

system If the results of the test conclude that a system is deteriorating (U > 0), then the NHPP 

failure process is assumed Assuming an NHPP, and the Weibull failure intensity described by 
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equation (2-6), then by observing the failure events of a system, Crow (1975), and Bain (1978) 

derive MLEs for X and ß. These MLEs can be estimated from data existing in the MMMS-AIS 

database which contains the maintenance history data on Marine Corps ground combat equipment. 

The times to system failures or, the meter readings at each z'-th failure are used to calculate the 

MLEs. Assuming that the failure observations starting from system time zero, the maximum 

likelihood estimates for K=l system are (Sadlon, 1993): 

P n 
nA    TTSF (2-10) 
E In——n 

M     TTSF 

and, 

X=_2- (2-11) 
TTSH 

where, TTSFn = Total time to last observed system failure 

TTSFi = Total times to i-th system failures (see figure 2.2) 

n   = Total number of system failure observations 

Crow (1975) also provides the conditional MLE ß for q = 1,2,3,...K systems: 

K 

EM, 
ß =  3*  (2-12) H      KM,    /TTSF■ v 

EElrJ 
q4  i-1       » TTSF 
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where: TTSFn        = Total Time to n-th System Failure of the q-th system 

TTSFj        = Total Time to i-th System Failure of the q-th system 

and. Nq       = Number of failure observations for the q-th system 

Mq       = I Nq., for failure truncated data 
Nq for time truncated data 

also, 

EH 
q=l 

£TTSFJJ 
q=l 

(2-13) 

Maintenance or failure data is most likely not available on most Marine Corps systems 

dating back to their fielding date, i.e., when the system was brand-new (T0 = 0), therefore, the 

MLEs for ß and X must be computed by rescaling the TTSFiS. The timeline below illustrates the 

situation where only a portion of the system's history data is available: 

Time=0 -» Present 

<r- data unavailable -> <r- past 36 months of data -» 

TTSF, TTSF, 
t 

TTSF„ 

Observed failure events 

For example, suppose failure data is available for the period 22,000 miles to 60,000 miles 

for a vehicle. Equations (2-10) through (2-13) assume that the TTSFjS are observed since T0= 0. 

Therefore, the known data must be rescaled to reflect the first observed failure as time zero. The 

implication is that the first failure observation in the data set will become zero, and the 

subsequent failure times reflect the differences between the next failure arrival times. To 

illustrate, consider the data below: 
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Known Failure Reseated Failure 
Mileages Mileages 

22136 0 
24758 2622 
28734 3976 
33489 4755 

The actual MIMMS-AIS TTSF; data used for the case analysis of the HMMWV sample 

population required rescaling. Rescaling the TTSFi data is only necessary when failure data for 

the entire life history is unavailable. Note that the resulting parameters ß and A, and the LaPlace 

statistic describe the ROCOF for the actual data interval, i.e., for the interval 22136 to 33489 

miles in the example above. Due to the cost and lack of need for maintaining archive 

maintenance data, MIMMS-AIS history data only contains the past 36-54 months of a system's 

maintenance history. Since the objective of this analysis is to estimate the present failure intensity 

in order to forecast the remaining life of the system, the past 36-54 months of historical data is 

most likely acceptable, given that there are enough data points to arrive at a confident conclusion 

1. Confidence Intervals for ß and X 

Decision makers using the model presented in this thesis should be aware of the 

confidence interval associated with the point estimators described in the preceding section As 

Chapter HI will show, considerable historical data exists for Marine Corps principal end items 

through the MIMMS-AIS database. Generally, given more observations, and longer total observed 

times for the samples, better conclusions can be drawn about the overall status of the equipment. 

The purpose of this section is to provide the confidence intervals discussed by Crow (1975) which 

are used to evaluate the confidence intervals around the point estimators. 
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The chi-squared statistic is used to test hypothesis about the true value of ß using the fact 

that 2Mß/ß is distributed as a chi-square random variable with 2M degrees of freedom Thus, 

the 100(1- a)% lower and upper confidence limits (LCL, UCL respectively) for ß using the x2 

statistic are: 

%% 2M) (LCL)        (2-14) 
P-ß     2M 

and 

X2(l-f, 2M) ^-^       (215) 
Hub    H       2M 

where x,2(a, 2M) is a chi-squared statistic with (1-oc) quantile and 2M degrees of freedom 

After an estimator for ß has been calculated, Crow uses the result together with the failure 

arrival times to estimate confidence intervals for X. Under time truncated testing on K systems, 

the lower and upper confidence bounds respectively, for X are: 

MP) - —  (LCL) (2-16) 
2£ TTSFj 

q* 

XKl-l, 2N+2) 
^ub(ß) = r1  (UCL)        (2-17) 

2]£TTSFj 
q-l 

These equations are provided as reference for the case analysis of the Marine Corps data 

presented in Chapter V. 
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E        OPTIMUM REPLACEMENT/OVERHAUL TIME WHICH MINIMIZES EXPECTED 
MAINTENANCE COSTS 

Barlow and Proschan (1965) discuss a model to find an optimal interval for system 

replacement or overhaul that minimizes the expected costs of performing minimal repairs. For a 

deteriorating complex system, they assume that minimal repairs (such as replacing a glow plug) 

do not disturb the system's ROCOF. Therefore, at some point, reliability and operational 

availability become unacceptable due to decreasing times between failures. This is consistent with 

the assumptions made in Chapter I. Here, it is assumed that overhaul or replacement renews the 

system to an "same as new" level of reliability, to the extent that operational availability meets 

expected mission standards. They refer to work by Barlow and Hunter (1960) to calculate the 

optimal period between overhaul or replacements for systems over an infinite time span. Barlow 

and Proschan (1965) show that when a system has a Weibull intensity function, with ß > 1 

(system is deteriorating), that the time which minimizes the expected maintenance cost is given 

as: 

T*= 
C2 

WWi 
1/(5 (2-18) 

where, c, = expected cost of minimal repairs 
Cj = cost of system replacement or overhaul 

More discussion of equation (2-18) is presented in Chapter IV as well as cash flow analysis of 

maintenance policy and overhaul alternatives. 

Dhillon (1988) offers a simple model to estimate the economic useful life Le of a 

repairable system expressed as: 

Le= 
2(K-S) (2-19) 

C 

where C is the annual increase in maintenance costs, K is the acquisition cost of the system, and 

S is the salvage value. 

Both equations (2-18) and (2-19) can be used as rough estimates to the numbers derived 

through the program managers, but should not be used exclusively for the ultimate decisioa They 
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can be helpful for determining how close some of the useful life estimates and overhaul intervals 

are based on known costs. 

F.        SUMMARY 

The purpose of this chapter is to introduce the basic reliability theory and models 

associated with complex repairable systems. The goal is to determine the projected ROCOF for 

a system based on historical data. System reliability is essentially an analysis of the arrival 

patterns of system failures. Knowing the failure arrival patterns, the data can be fit to a likely 

distribution to forecast future system failures. The hazard, or peril rate under the Weibull 

distribution can be used to represent the system ROCOF for each stage of its life-cycle. The 

LaPlace test statistic shows whether system failure trends are improving (burn-in), constant 

(normal life), or deteriorating. When the LaPlace statistic indicates that the system is 

deteriorating, the NHPP assumption is used to model the failure process. Maximum likelihood 

estimators for the ROCOF parameters are derived from the system data, and confidence intervals 

can be constructed around those estimators. Knowing the parameters of the ROCOF, cost- 

minimizing equations can be used to determine an optimal interval for system overhaul or 

replacement. The next chapter describes the Marine Corps maintenance database that is used for 

the case analysis. 
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ffl. MIMMS-AIS DATABASE ANALYSIS 

A BACKGROUND 

The purpose of this chapter is to describe the data available for use with the formulas 

discussed in Chapter H The Marine Corps Integrated Maintenance Management System- 

Automated Information System Field Maintenance Subsystem (MIMMS-AIS FMSS) is supported 

by a centralized database which contains historical maintenance information on Marine Corps 

ground equipment. MIMMS-AIS is used to record, process, store, and produce required 

maintenance management data for use at all levels of command in the Marine Corps. Daily shop 

actions and equipment job status are manually entered into the FMSS by Fleet Marine Force 

organizational and intermediate level maintenance shops. Daily, weekly, monthly or as-required 

output reports are generated by the FMSS for use at all management levels. A key feature is the 

ability to provide information required to support maintenance engineering, resource management, 

and maintenance production MIMMS-AIS interfaces with the Marine Corps supply system 

(SASSY) which provides for all data pertinent to requisitioning, status, issue, and cancellation of 

repair parts (UM 4790-5, 1987). 

Another data source for equipment common to the USMC and U.S. Army, (such as 

tactical wheeled vehicles) is through TACOM TACOM tracks specific principal end items 

throughout their life-cycle, and monitors the repair shops where the items are maintained, which 

gives it a level of control over the quality of the data in the sample data collection (SDC). Marine 

Corps decision makers should consider any operational usage differences between Marine Corps 

and Army systems when using TACOMs SDC. In most cases, it can be assumed that usage of 

common principal end-items for both services are the same. 

Although this chapter describes procedures to analyze the MIMMS-AIS data, it is intended 

to apply also to the next generation maintenance management system, the Asset Tracking Logistics 

and Supply System II (ATLASS II). The general concepts and approach discussed here are 

assumed to be valid for both systems. 

B.        SHOP MAINTENANCE PROCEDURES AND ERO TRANSACTION FLOW 

This section briefly describes the procedures used at the maintenance shop level, including 

the flow of transactions, in order to understand how to interpret the data and identify 

inconsistencies. The Equipment Repair Order (ERO) is an administrative form (NAVMC10245), 
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identified by a unique number, used to track the maintenance progress of a single end-item 

(repairable system) in the maintenance cycle (TM 4700-15/1, 1994). It is the source document 

for all maintenance related activities, including calibration, modification, and scheduled 

maintenance. EROs are initiated for any corrective or scheduled preventative maintenance 

performed at second echelon or higher repair levels (MCOP4790.2. 1994). Data input fields on 

the ERO and subsequent status changes are used to generate the various maintenance management 

automated reports. In the "real world," the reliability of the input data is subject to the level of 

training and supervision of the input clerks; therefore, an understanding of where the data comes 

from is necessary. 

The ERO includes data such as the date received in shop, serial number, item 

nomenclature, defect(s), maintenance category and other descriptive maintenance data. Input 

codes for each ERO field are provided in UM 4790-5. Daily, all new EROs and status changes 

to existing EROs are keypunched by data clerks into MMMS-AIS, and transmitted to the 

Regional Automated Services Center (RASC) mainframe via local area network or other medium 

ERO change transactions are submitted whenever the maintence category, defect description, repair 

status, receipt of parts, or other status changes occur. Repair parts, components, and secondary 

repairables can be requisitioned through MMMS-AIS since it interfaces with the supply system 

during the daily update cycles. Replacement parts are requisitioned for the ERO using an "ERO 

Shopping List" (EROSL, NAVMC 10925). When all parts have been received and applied to the 

system, repairs are completed and quality control checks are done. If no further maintenance 

actions or repairs are required, the ERO is then closed. The final maintenance data pertaining to 

the ERO to include all received parts, the primary meter reading (mileage, hours, etc.), and direct- 

labor hours then become part of the ERO history for that item These items are stored as database 

elements for each ERO record. In Excel, they are the column headings for the file, and each 

separate ERO is a row, or database record. 

A flow diagram of general shop maintenance procedures is found in Appendix F of the 

MLMMS Field Procedures Manual (MCO P4790.2C, 1994). 

1.   Identification of Failures 

System failures are identified one of two ways; either by the equipment operator during 

usage, or by the organizational maintenace shop during the performance of scheduled preventative 

maintenance (SPM). Detailed inspections of components and subassemblies are performed during 
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SPMs, and "worn out" or unserviceable components are identified. Normally, the equipment 

technical manual (TM) will specify serviceability standards for components. Although a part has 

not necessarily failed, if its condition is worse than the standards, it is replaced. For our purposes, 

this condition is defined as a part failure. If (unscheduled) corrective maintenance (CM) is 

identified during the conduct of a scheduled preventative maintenance ERO, then normally a 

separate CM ERO is initiated (TM 4700-15,1994). The other method of failure identification is 

when the equipment operator identifies a system failure during system prechecks or operation 

In that case, the defect is identified to the supporting maintenance shop and an ERO is initiated. 

2.    MIMMS-AIS History files 

The MDVIMS-AIS Master ERO File contains approximately 36 past months worth of ERO 

history for all systems which had maintenance performed, recorded and input by unit maintenance 

shops. The data of interest for this analysis includes the time/mileage between EROs, the active 

maintenance time interval (time between the open and close dates of the ERO), labor hours, and 

parts applied under each ERO. 

Historical maintenance data is captured on a quarterly basis by each of the RASCs and 

is transmitted to a central database at the Marine Corps Logistics Base, Albany, Georgia. The 

historical MIMMS-AIS data serves as the basis for determining parts usage and costs, labor hours, 

repair category and status, maintenance engineering, modification control, and other descriptive 

repair data. This data can also be converted into the chronological time-between-failure statistics 

discussed in Chapter II for analysis. Detailed discussion on the MIMMS-AIS FMSS can be found 

in MIMMS-AIS Users Manual (UM 4790-5, 1987). 

C   KEAL\\DRmMDATAINTERPRErATiaVS 

1.    MIMMS-AIS Primaiy Meter Readings 

In the current system, the meter reading (mileage) is recorded when the ERO is closed, 

not when the system is inducted into the shop for maintenance. The implication is that the system 

can, and normally is, operated during the period while the ERO is opea This means that the 

meter reading is not the Twae-At-Fälure but rather the Tuae-M-Restorution. Under ideal 

circumstances, (i.e., instantaneous repair) these would be equal, but in the "real world," they are 

not. For the model presented in this thesis, the assumption is that the relative difference between 
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the meter reading at failure (when the ERO is initiated) and when it is closed is not significant, 

in terms of the total life usage. That is, if the TTSFn is large relative to the intervals around the 

TTSFjS, then we should not be concerned between the differences in meter readings4. 

Example: Suppose an M998 HMMWV had its i-th mission operational failure on January 

1st with a mileage (TTSFj) of 16,000 miles. It is inducted into the maintenance shop that day and 

an ERO is opened on the item During the diagnostic inspection, several parts are identified as 

needing replacement; an alternator to restore the HMWWV to operational status, and several non- 

critical components. The same day, the alternator is exchanged for a rebuilt one at the 

Maintenance Float activity5, and the vehicle is restored to a combat operational status. However, 

the non-critical parts are back-ordered in the supply system, and the ERO remains administratively 

open in a short-parts status. In the meanwhile, the HMMWV is used for a field training exercise 

and accrues mileage. The non-critical parts arrive on March 10th, and the HMMWV is recalled 

into the shop for the parts to be applied. The mileage of the vehicle when the ERO is closed is 

16,875. The only meter reading that is visible in the MIMMS-AIS history associated with this 

particular ERO is 16,875. 

The example above is not unlike what actually occurs in most Fleet Marine Force units. 

MIMMS-AIS currently does not capture the mileage at failure, so the TTSF data available for the 

analysis is based on the assumption that the difference between mileage at failure and mileage at 

restoration is small relative to the total system mileage. Recommended solutions to this problem 

are offered in the Conclusion chapter of this thesis. 

Another significant problem with meter readings in FMF maintenance shops is inaccurate 

data input. For reasons due to lax shop management procedures or difficulties in getting the 

FMSS to "close" the EROs, often times the actual equipment meter readings are intentionally not 

correctly entered. The most common "shortcut" is to enter "999999" in the meter-reading field 

of the ERO to force the system to accept the ERO-close transaction   Other common meter 

4the "true" ITSF, would be the mileage at restoration (ERO close) minus the mileage at the i-th failure. We assume for this 
thesis that the difference is insignificant compared to the total mileage at the most recent failure, TTSF„. 

5The Maintenance Float Activity Groups provide a pool of ready-for-issue secondary repairables (SDRs), either new or 
rebuilt, in exchange for unserviceable SDRs from customer units. 
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readings include low whole numbers such as 1, 10 or 100.   A second observation is that 

sometimes the Julian date of the close transaction is inadvertently entered in the meter-reading 

field.  This situation is usually obvious when reviewing the data.  For example, a mileage of 

"94032" miles entered on February 1st, 1994 (94032 Julian date) is easy to spot.   The third 

common problem is that some of the meter readings were entered with the tenths digit included, 

when MMMS-AIS does not allow for tenths.  In this situation, the meter-reading in the data 

should be screened for the following pattern: 

Meter Miles Between 
ERÜ Date Reading Failure? (computed field) 
PK345 3/15/93 16,235 
PK124 5/04/93 17,044 809   actual 
PJ874 9/18/93 177,355* 160,311 (691 actual) 
PM221 10/21/93 17,856 -159,499 (121 actual) 

* In this example, it is obvious that the mechanic included the tenths reading from the 
odometer, when 17,735 miles should have been entered. A logic flag can be used to identify this 
condition, and the data can be manually adjusted if the mistake is obvious enough 

The last condition that creates "suspect" meter-reading data is when the physical meter 

itself is replaced. In this case, the logic flag might highlight a low mileage reading following a 

high mileage reading. This situation could also explain when the meter reading is a low number 

such as "1" or "10." In that case, a defect code would appear in the ERO history reflecting 

"METER-RPLC" in MIMMS-AIS, or code "X34." If the "X34" code does not appear in the 

defect-code field of the ERO history, then the analyst should assume that the meter reading is 

suspect input. For the data on the HMWWVs used in the case analysis, approximately twenty 

percent of the meter readings were "suspect" for reasons cited above, and were scrubbed prior to 

analysis. 

2. Multiple EROs Open Simultaneously on the Same System 

Multiple corrective maintenance EROs are allowed to be opened on an equipment system 

at one time, which sometimes creates a problem with ordering the MIMMS-AIS failure data. For 

example, an unscheduled CM ERO may be open in a pending status on an item that is later used 

in support of a separately funded exercise. Repairs incurred during the exercise have to be 

recorded under a separate CM ERO to reflect the difFerent accounting data At one time, two 

EROs can be open at the same time on the same item. There is no problem in the analysis if the 

first ERO is closed before the second. However, if the repairs for the second ERO are done 
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quickly (i.e., the parts were immediately available), the second ERO might be closed out before 

the first. Since the Master ERO History files are sorted by the date EROs are opened, the mileage 

will appear to have decreased for the second ERO, and would reflect a negative time-between- 

failures. For this reason, the raw MMMS-AIS data should be either be resorted by the ERO close 

dates, or manually adjusted in order to have the mileage reflect sequential failures. The use of 

a logic flag, such as "IF [Mies Between Failures < 0]" will identify these situations. 

Approximately ten percent of the data used in the case analysis fell into this category. Appendix 

A provides the logic flags used to screen the Excel data. 

3.    Long Maintenance Cycle Times for EROs 

A final issue to be considered when analyzing the raw MMMS data is the fact that most 

EROs remain open for a considerable length of time, which means that the EROs can cover 

multiple separate failures with only one (final) meter reading recorded. The effects of EROs 

staying open for so long is that any meter readings for subsequent failures other than defect that 

warranted the ERO in the first place are not recorded. Unit level maintenance on organic 

equipment is often recorded on "perpetual EROs" for administrative convenience. The MMMS- 

AIS data for the case analysis had a mean ERO time (the difference between the close and open 

dates) of 120 days. The mean lag time between when parts were ordered and when they were 

received was approximately 20 days. The long ERO times impacts the Total Time to System 

Failure (TTSF) data, in that much of it is not recorded in the system. Despite these problems, 

the instananeous repair assumption still applies in this thesis. It is assumed that critical repairs 

are completed the same day that parts are received, which is normally true for most Marine Corps 

maintenance shops. 

Example: Suppose an M998 HMMWV is inducted to the shop on March 1 st due to a bad 

starter. After inspection and acceptance, the starter is exchanged at the Maintenance Float 

Activity, but several other non-critical parts are backordered. The vehicle is restored to 

operational status the next day, while the ERO remains open pending receipt of the other parts. 

A few weeks and several hundred miles later, the HMWWV has another system failure due to a 

wheel seal. It comes into the shop again, and the wheel seal and several other parts are 

requisitioned under the existing ERO. The existing ERO is used for convenience since it is 

already open for that system's serial number. The cycle continues until all of the requisitioned 
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parts have been received and applied. It is not unusual for some EROs to remain open on 

individual equipment systems for over six months. 

Unfortunately, MDVMS-AIS currently does not reflect mileages at subsequent failures 

under the same ERO. This concept may account for a portion of the variance which widens the 

confidence intervals in the data. Program managers, and other decision makers at the ILSD 

should keep in mind the factors that limit the data. In most cases it can be assumed that the parts 

are applied on the same day that they are received, so that the instantaneous repair assumption is 

valid, but it does not count down-time due to administrative or logistics delays. 

One possible way to address this would be to measure the time between when "batches" 

of parts are received and when the next "batch" of parts are ordered for a system under the same 

ERO. Here, we define a the failure point as the date on which parts were requisitioned, assuming 

parts are requisitioned on the same day that the system failed. We further assume that critical 

parts are applied to the vehicle the same day they are received. The interval between when a 

batch of parts were received (and the system restored) and when the next batch was subsequently 

ordered (due to the next failure) would be the TBFj. To convert to miles, multiply the interval 

in days/years by average daily/annual mileage. Unfortunately, the real world data has far too 

much variance in equipment usage to draw any meaningful conclusions. Using an indirect means 

to compute failure intervals is not desirable. Nevertheless, this alternative would be a better way 

to define the interarrival of failure times, given a system design change that incorporates miles 

at failures in the MMMS-AIS system 

The sample data collection (SDC) used by TACOM does attempt to record the mileage 

at each maintenance incident. Further, cumulative miles are accounted for when meters are 

replaced. However, the TACOM data that was provided for this analysis only contained 

equipment mileages at the beginning and ending of the quarterly sample periods. The actual meter 

readings at the /-th failures were not available, therefore trend patterns in the system failure data 

was not visible, and therefore not conducive to this analysis. 

D.       PREPARATION OF THE RAW MIMMS-Aß DATA FOR USE WITH 
MICROSOFT EXCEL (SPREADSHEET) 

Analysis of the MMMS-AIS data utilized Mcrosoft Excel, a Windows-based spreadsheet 

for personal computers. The data is collected through standard procedures outlined in the 

MIMMS Field Procedures Manual (MCO P4790.2C, 1994), and the Users Manual (UM 4790-5, 
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1988) and downloaded via mainframe computer into database files. Sample sizes should be 

determined by standard statistical methods, however analysis of the raw data is limited to the 

memory capacity of the PC being used. System memory should be considered in addition to 

required sample sizes when using the methods presented in this thesis. After the data is obtained, 

it must be converted into a form that can be used for the analysis. 

Appendix A contains a description of the database fields, formulas and logic flags used 

for the model. In general, each row of the MMMS-AIS database constitutes a maintenance 

record, such as an ERO and associated parts requisitioned. Additional documentation can be 

obtained from the author. 

1. Major Data Categories 

The first step in the data preparation is to specify to the data source the sample size and 

the repairable system to be analyzed. MMMS-AIS contains approximately the past thirty-six 

months of historical data on all repairable systems in the Marine Corps inventory. Equipment is 

designated by its model nomenclature, but more specifically by other descriptive codes or numbers 

such as the National-Stock-Number (NSN) or its Table of Authorized Material Control Number 

(TAMCN). The data query was based on a single TAMCN. Secondly, the ERO History file can 

be segregated by Regional Area Codes (RACs), such as U.S. East Coast, U.S. West Coast, and 

the Western Pacific region (Okinawa). Usage and failure patterns may be different for each of 

these populations, so the data was broken down by separate RAC for the analysis. Lastly, the 

year of manufacture, or other data such as lot number may contribute variation in the population's 

failure patterns. The TACOM SDC database includes the equipment manufacture year directly 

in the data. MIMMS-AIS however, does not contain the year of manufacture in the database. 

That data is available through the respective inventory managers at MCLB, Albany, and has to 

be merged separately with the MIMMS-AIS data. 

The next step is to sort the data and purge database entries that show inconsistencies or 

are "suspect" as described earilier in Section C. 

2. Sorting and Purging the Data 

The data requested should be sorted by serial number, and then by the "date recieved in 

shop," which is assumed to be very close to the date of system failure. In certain cases it may 

be advantageous to sort by the ERO close date instead of the open date, due to the multiple ERO 

problem described earlier.   To properly use the non-homogeneous Poisson process (NHPP) 
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assumption described in Chapter II, recall that the data must be chronologically ordered according 

to the sequence of z'-th failures. It is assumed that regardless of whether the data is sorted by the 

open or close dates of the EROs, that the meter-readings at failure (restoration) are in the proper 

sequence. 

Logic flags are used to highlight "suspect" or inconsistent data, such as the bad meter 

readings described in Section C. Logic flags are also used to identify the next ERO recorded on 

the same serial number, or to differentiate between different serial numbers. Use of numeric logic 

flags can be used to count the number of records that meet a specified criteria. These logic flags 

and counters are summarized in Appendix A. Suspect data such as the meter readings described 

earlier should be eliminated. 

Non-critical parts ordered should not be counted as system operational mission failures. 

Critical components that do cause mission operational failure are identified in MMMS-AIS by 

a "Combat Essentiality Code" (CEC) equal to 0,1,5, or 6. EROs not meeting this criteria should 

not be considered as mission operational failures. These are used as query criteria for the data 

extract. 

A caution: MMMS-AIS uses a field called a "category code" which defines whether an 

ERO is open for a mission operational failure or non-critical maintenance. All category codes 

must be requested in the query, since an ERO designated with a mission critical category code 

may be downgraded to non-critical repairs (Category code "X" or "N") prior to closing the ERO. 

Therefore, to query the system only for Category code "M' (system failure) EROs would cause 

missing data. It is better to define mission operational failure, (critical maintenance EROs) by the 

CEC codes of the parts requisitioned to restore the item 

3. Time Truncated and Failure Truncated Data 

Chapter II provided two sets of maximum likelihood estimators presented by Crow (1975) 

for determining the ROCOF function for a system The time truncated data holds the ending time 

for the observations constant and number of failures as variable. The failure truncated data 

observes systems to a specified number of failures, where the end time of the observations is 

variable. The MIMMS-AIS data readily lends itself to time truncation data For example, a 

database criteria can be specified to provide all records for vehicles with less than or equal to 

50,000 miles. Then, we simply count me number of failures and measure me intervals between 
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failures. Hence, for the case analysis presented in Chapter V, the data is time truncated and the 

appropriate formulas from Crow (1975) are used. 

4. Juüan Dates in MMMS-AIS 

MMMS-AIS uses Julian dates to record maintenance actions. That is, January 1st, 1994 

is 94005, and December 15th is 94349. In order to perform computations with these dates, they 

need to be converted to year and date values in Excel, and then combined with logic statements 

to correctly perform subtractions. For example, if we want to compare the difference in dates 

between when an ERO is opened and when it is closed, we cannot always perform the subtraction 

directly. Suppose an ERO was opened on December 15th, and closed on January 5th. The 

calendar difference is 21 days, however the difference between Julian numbers is 656. An 

algorithm for computing these differences is provided in Appendix A. 

5. Päreto Analysis 

In order to show that a repairable system is sufficiently complex enough to use the model 

presented in this thesis, it is useful to conduct a Pareto analysis of the system failure causes. 

Since the data identifies replacement components that presumably caused the system failures, the 

MIMMS-AIS data can be transformed into a Pareto ranking to draw conclusions about the primary 

contributors to system failure. The 80/20 rule might be used to validate the "sufficiently complex 

system" assumption If less than 20% of the components cause 80% or more of the system 

failures, then either poor quality components or improper equipment operation might be the causes 

of the system failures, and further investigation would be needed prior to making an overhaul 

decision Conversely, if greater than 20% of the components cause 80% of the system failures, 

then the system is assumed to be sufficiently complex to use the assumptions. Reasonable 

judgement should be used when components are used to define system failures; for example, tires, 

brake shoes, and batteries for vehicles are replaced on a regular basis due to normal wearout, and 

may not need to be considered when evaluating the system failure complexity. 

Microsoft Excel makes the Pareto analysis relatively easy. The repair part data can be 

sorted by stock-number and counted. Apivot table was generated which provides usage subtotals 

for each separate component. The relative frequency of each part is the subtotal divided by the 

total number of parts in the sample. The relative frequencies can then be classified by cumulative 

proportion of the total sample, into classes such as A, B and C parts. 
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Table 3.1 provides summary Pareto data of critical repair parts replaced on a sample of 

n = 276 systems over a 54 month period. The table shows that five of the parts out of 142 types 

in the sample caused 2734 of the system failures, or 38% of the total failures. 

Total types of parts replaced:       142 

Total usage of parts replaced:  7,281 

Part Class Number of Types in Class Number of Failures 
in Class 

Contribution to 
Total Failures 

A 5 2734 38% 

B 10 1577 22% 

C 127 2970 40% 

Table 3.1 Pareto Analysis of Failure Caused By Parts 

It should be noted that one part had the highest individual contribution to system failure 

(16%), but this may have been due to special circumstances, explained in Appendix C. The 

remaining A parts were between 3-7% (each) of the total failures; the B parts ranged from 1.6 to 

2.8% of the total failures. Nine of the C parts contributed between 1-2% of the total system 

failures, and the remainder of the parts each contributed to less than 1% of the system failures. 

Further reliability analysis and product improvement may be warranted on the one part that 

contributed to 16% of the system failures. Based on these results, it is safe to conclude that the 

system is sufficiently complex enough to assume independent failure causes. We can therefore 

classify this system as a "complex repairable system" (Crow, 1975). The detailed data is 

presented in Appendix C. 

E SUMMARY 

Considerable data is available from both the Marine Corps and the U.S. Army available 

for use with reliability engineering theoy. Interarrival times for system failures can be derived 

from either the MMMS-AIS database, or the Army TACOM Sample Data Collectioa These two 

databases do not have the same structure, therefore the assumptions and procedures for screening 
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the data for each are not interchangeable. The main purpose of this chapter is to identify 

interpretations of the MMMS-AIS data. Similar data is available from the U.S. Army. 

Knowing the interarrival patterns of the system failures, the reliability concepts discussed 

in Chapter H are applied to the data to determine the condition of the equipment, and make 

projections about the future. Forecasted failures are then used for decision making between 

alternative replacement, overhaul or rninimal repair policies, or to evaluate the effectiveness of 

extended service life programs. 

When using idealistic models, it is critical to consider the assumptions and the source of 

the data. Knowing how the data is generated helps to identify causes of variability, and helps 

eliminate "suspect" data prior to drawing conclusions. It is important to be able to recognize the 

"garbage in - garbage out" situation, caused by erroneous input or missing data. This chapter 

provids examples of some of the common causes of inconsistencies in MMMS-AIS data. Large 

databases can be screened for such inconsistencies by using logic flags and indicators designed 

to highlight such situations. Proper use of the statistics described in Chapter II depends on correct 

ordering, sample sizes, and truncation of the data, as well as the knowing assumptions and 

limitations of the models. MIMMS-AIS provides the historical data on Marine Corps unique 

equipment for reliability analysis. 

The next chapter presents a cost-based model that may be used to project the costs of 

expected failures over future intervals. 
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IV. DESCRIPTION OF THE MODEL 

A. INTRODUCTION 

This chapter outlines a model developed for this thesis which combines system reliability 

with the cost of failures that are used when evaluating alternative "do-nothing" or overhaul 

decisions. The system "cost of failure" used here is defined as the direct costs associated with 

restoring the system to operational status. For simplicity, each Equipment Repair Order (ERO) 

reflects a single system failure, such that the cost of replacement parts plus the cost of direct labor 

are taken to be the failure costs for a repair of a single system The model presented in this 

chapter uses historical maintenance data on a system using the time to failure data, in order to 

obtain maximum likelihood estimates of the parameters of the ROCOF, p(0, presented in Chapter 

II. The "do-nothing" alternative means that the system is restored by minimal repairs each time 

it fails. As the system begins to fail more frequently due to deterioration, the cost of owning that 

system may increase at an increasing rate. At some point, it is more economical to overhaul or 

replace the system This chapter outlines the steps used to analyze a "do-nothing" versus overhaul 

decision about a Marine Corps system based on MMMS-AIS data. The next chapter presents a 

case study of the M998 HMMWV using the model described in this chapter. 

Since no HMMWVs have been overhauled, no data exists on the reliability of the system 

after overhaul. Lee, Puzzuoli and Hoogterp (1975) have developed a simulation program which 

can be used to analyze the effects of overhaul on military vehicles for various overhaul intervals 

and percentage of components replaced. Their conclusions show that under most conditions, a 

system is restored to about 90% of its original, or ay new reliability after overhaul. The US Army 

Tank-Automotive command assumes that overhaul extends the system life to roughly 80% of its 

economic useful life before overhaul. After overhaul, the system failure rate increases with age 

at roughly the same rate as it did prior to overhaul. 

B. DESCRIPTION OF THE MODEL 

This analysis can be described in two parts; first, analysis of the system reliability which 

involves estimation of the ROCOF, and second, the cost estimate of the do-nothing alternative. 

The MEMMS data provides for computing both the reliability and costs for the analysis on the 

existing system. The cost estimates for the overhaul or rebuy alternatives are beyond to scope of 
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this thesis; therefore, cost assumptions regarding overhaul and rebuy alternatives is based on the 

appropriate Program Manager's estimates. 

1. Estimation of the Rate of Occunence of Failures 

The objective is to estimate the system rate of occurrence of failures (ROCOF) given by 

p(t) as described in Chapter n, in order to obtain a quantitative measure of where the system is 

in its life-cycle, i.e., in its "useful life" or deterioration phase. The integral of the ROCOF, given 

by equation (2-8) provides an estimate of the expected number of failures, V(t), within a defined 

interval (Ascher and Feingold (1984), Sadlon (1993), Barlow and Proschan (1965)). Expected 

costs of those failures can be multiplied by the number of failures in the intervals to determine 

total costs. The steps involved in the ROCOF model are: 

Step 1. Obtain the Total Time to System Failure (TTSF) data on the system. If data is 

available starting from time zero, then equations (2-10) through (2-13) can be used to 

obtain the MLEs for ß and X . If data is only available for a limited history, then the 

TTSF; are rescaled with the "first" failure in the observed interval taken to be time = 0 

for computational purposes. The resulting MLEs will actually describe the failure 

intensity for the interval in which the TTSF data was takea 

Step 2. Investigate for major contributing causes of repeated system failures. The 

purpose is to prevent making an overhaul/replace decision based on the contribution of 

a single component or small group of components which are causing most of the system 

failures. A Pareto analysis is used in this thesis to establish whether the system is 

sufficiently complex enough to verify whether a small group of parts dominate the total 

system failure causes or not. Other techniques such as fault tree analysis, failure mode 

effects and criticality analysis (FMECA), or a review of Quality Deficiency Reports (SF- 

368) may provide more detailed analysis of contributing failure causes. 

Step 3. Perform trend analysis, using either the LaPlace trend test, the ML-HDBK-189 

test or graphical plotting to determine whether the system failure rate shows constant or 

deteriorating trends. 

Step 4. If the failure rate shows a constant trend, continue to use current (linear) O&M 

cost projections when evaluating decision alternatives. A constant failure rate would 

assume the HPP failure model, therefore linear cost assumptions would be appropriate. 
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Step 5. If the failure rate shows an increasing trend, estimate the ROCOF by calculating 

the MLEs for ß and X presented in Chapter II. The next section presents a spreadsheet 

model which computes individual system MLEs as well as pooled MLEs for the sample. 

Costs will increase as a function of the expected number of failures in time t (Note: 

Depending on the value of ß, i.e., when ß ~ 1, the V(t) may appear to be nearly linear, 

in which case it may be simpler to use a linear cost approximation Whether to use the 

linear assumption or not would be based on the fit of a linear trendline to the ROCOF, 

and the resulting coefficient of determination). 

Step 6. Forecast the expected number of failures for future periods as a basis for 

comparison to the overhaul/replace decisions. Bain (1978) provides further information 

on prediction intervals. 

The steps listed above can be summarized by the flowchart shown in Figure 4.1.    It 

depicts the steps to decide whether to use the HPP or NHPP assumptions: 

Obtain TTSF 
Data 

Investigate 
contributing 

failure causes Pareto 
i Analysis 

Trend 
Analysis 

Trend« 

No 

Yes NHPP: 

compute 
ROCOF 

HPP: continue 
using current cost 

assumptions Compute 
E[N(t)] 

projections 

Figure 4.1 System Failure Rate Analysis 

2.   Cost Analysis 

The underlying assumption in the cost analysis is that the number and frequency of 

failures increase as mechanical systems age, and therefore the cumulative costs associated with 

the failures do also. For this analysis, only the variable costs of parts and labor associated with 

the ERO are considered, assuming that fixed costs for the systems associated with either 

alternative are the same. 
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Simulation is used to evaluate total cost distribution outcomes of the decision alternatives. 

This way, the probabilities associated with the expected values of the decision alternatives are 

used to make more informed decisions, not just the expected values alone. The simulation is 

based on the frequency distributions of the input parameters. Frequency distributions of the 

MMMS data are constructed from the costs (replacement parts and direct labor hours) fields from 

each ERO in the sample. These frequency distributions are then run through "Best Fit," a 

statistical software package which provides the descriptive statistics and most likely distributions 

of the data. Once the cost distributions are obtained, they can then be input into the appropriate 

cost equations and run through commercial software such as "Crystal Ball" (Decisioneering, 1993) 

or "@Risk", which are spreadsheet add-in programs. These programs run automatic "Monte 

Carlo" simulation on the input parameters to provide a solution output distribution The output 

distribution is more meaningful for decision making than deterministic values. In the case of the 

MMMS-AIS data, the labor hour and ERO cost data are run through Best Fit to obtain the input 

distribution for use with Crystal Ball. For the purposes of this thesis, only labor and replacement 

parts costs are considered, assuming that overhead and fixed costs for either the "do-nothing" or 

overhaul/buy-new alternatives are the same. 

The cost per system failure CF, obtained from the ERO cost distributions, is defined as: 

where Q is the cost of all replacement parts applied to the ERO, and Q is the cost of direct 

labor. Direct labor hours are recorded on the ERO, and reflect the total mechanic-hours used to 

restore the system It is not necessary to assume that one or "n" mechanics performed the repairs 

to compute total labor hour costs. Note that labor costs are not recorded on the ERO; rather, 

labor hours. Labor costs are derived based on several assumptions. Here, it is assumed that 

equipment is repaired by Marines of rank E3 through E5, with probabilities of 0.45,0.35 and 0.20 

respectively, that each rank performs repairs. Therefore, a "weighted" labor rate based on the 

composite hourly rates times the probabilities above is used to calculate labor costs for each ERO. 

The composite hourly rates for paygrades E3, E4 and E5 are $10.29, $12.33, and $14.46, 

respectively. The weighting factors above are based on the approximate ratios of these ranks 

within a typical maintenance shop; therefore the weighted rate used is $11.84/hour. Pay and 

benefits data is based on FY90 dollars (MOO P7000.14,1991). 
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Hie total costs for a future projected period (Cj) is determined by the expected number 

of failures times the cost per failure CF, plus scheduled maintenance costs, Cs, or: 

Cr^tJCp+q. (4-2) 

where V(t) is given in equation (2-8). This formula is used to calculate the annual maintenance 

costs of the do-nothing alternative. 

G   MIMMS DATA PREPARATION 

The analysis of the MMMS-AIS data was done on a personal computer, using a 

combination of Microsoft Query, a database program, and Microsoft Excel, a spreadsheet program 

The query program is used to further refine and filter the data prior to use with the spreadsheet. 

The spreadsheet program is used for ease of computations and graphical plotting. 

In order to conduct the analysis, the raw MIMM-AIS data has to be converted to a 

spreadsheet format. The most important data for the reliability analysis is the time to system 

failures (TTSF), which in the case of MMMS-AIS is the primary meter-reading (equipment 

operating time) field Other relevent data is needed to segregate fleet populations, such as 

WestPac equipment from U. S. East Coast equipment, since systems in different geographic regions 

will show different failure patterns. Other MIMMS-AIS data such as parts replacements, parts 

costs, and labor hours are needed in order to compute the cost distributions associated with system 

failures. The following database fields are needed to conduct the analysis presented in this model: 

Field Name     Description 

RAC Geographic Regional Activity Code. 

ITEM The equipment type, designated by its nomenclature, or identification 

number, model number or other descriptive information 

SERIAL #       The equipment serial number. 

DATERECIN  The date the Equipment Repair Order was initiated, and the equipment 

was received in shop for repairs. 

DATECLOS    The date the ERO was closed, repairs completed 
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MEIER The meter reading (mileage).   Chapter m discussed the fact that this 

should be the mileage at failure, however, MMMS reflects the mileage 

at restoration. These records represent the system TTSE, for the system 

PARTNAME   The repair parts used to restore the system Presumably, parts are 

replaced due to wearout/failure. 

QTY Quantity of parts replaced. This is multiplied by the parts cost to obtain 

total cost of a particular component type replacement. 

PARTCOST Charges for replacement parts. Note that a factor of 40% is used for 

secondary repairables, such as engines and transmissions, since the cost 

in MTMMS-AIS reflects the price of a new secondary repairable. In 

practice, the large majority of these are rebuilt for about 40% of the new 

cost. (TACOM 1985) 

MILABHRS    Total direct labor hours expended during repairs under each ERO. 

ECHELON Echelon of repair of the ERO. Note that only 2nd echelon EROs should 

be used to compute TTSF; mileages for higher echelon repairs should 

not be included. 3rd and 4th echelon repairs are presumed to be due to 

the same failure which initiated the 2nd echelon ERO. 

Other MIMMS-AIS fields and separate computed fields (such as requisition lead-times, 

logistic delay times, etc.) may be used for more detailed analysis. Since data records are 

displayed as spreadsheet rows, logic flags are used in the spreadsheet to differentiate records 

associated with the EROs or serial numbers contained in the previous record. Appendix A 

presents the logic flags used in the spreadsheet to further filter the data, and to count records 

meeting specified criteria. 

1. Segregate Different Populations 

In order to obtain meaningful results, the sample population of the system in question 

should be as homogeneous as possible. When setting up the data for analysis, any database codes, 

fields or flags that distinguish between the system manufacturing date, location, variant, or model 

number should be segregated, depending on the comparability of the items. In the case of the 

HMMWVs, the Marine Corps has many different variants which are used under different 

operating conditions. For example, even the data for a single variant, such as the M998, includes 
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both the "generic" vehicles, and radio variants which will show much different operating 

characteristics from each other, such as mileage or engine wear. Further, major geographic or 

regional factors may need to be considered since environmental conditions will have varying 

degrees of effect on the life of the equipment. Therefore, the analysis may require the data on 

like systems to be filtered into homogeneous populations prior to drawing any meaningful 

conclusions. 

2. Eliminate Questionable Data 

Chapter III discussed problems with MMMS-AIS meter reading data. Prior to conducting 

any of the analysis requiring system TTSFs, suspect data should be filtered out. Logic flags are 

used in the spreadsheet to highlight: 

"Suspect" meter readings of "999999," "0" or "1" miles. 

Meter readings which are less than the prior meter reading on the same system 

Meter readings that are unreasonably higher than the prior meter readings. Such 

entries are often due to the tenth digit being included when the mileage was 

recorded in MIMMS, e.g. an odometer reading of 17184.3 was incorrectly entered 

as 171843 miles. (Refer to Chapter m, section C). 

3. Perform Pareto Analysis 

The decision to overhaul or replace a system is based on the assumption that the existing 

system is deteriorating beyond economical repairs. If only a few components are contributing to 

the causes of the system failures, then the attention should be focused on improving the reliability 

of those few but vital components. Crow's (1975) MLEs discussed in Chapter II assumes that the 

system is sufficiently complex and that no single part or groups of parts contribute to the majority 

of the system failures. The MEMMS replacement part data is analyzed using Pareto analysis, and 

the results provide the basis for the validity ofthat assumption. As Chapter III showed, the Pareto 

analysis on the HMMWV indicated that the "sufficiently complex" assumption could be used. 

4. Perform Trend Testing 

Equation (2-9) provides the LaPlace test statistic (U) which indicates trends in the failure 

data. Prior to making assumptions about an HPP or NHPP failure rate, this statistic should be 

computed for the systems in the population. A graphical plot of the cumulative times to failure 

versus cumulative number of failures will also indicate whether a system is improving, in a 

steady-state, or deteriorating. 
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5. Compute MLEs ß and X and Confidence Bounds 

Equations (2-12) and (2-13) are used to compute the conditional MLEs for ß and X for 

time truncated data. Confidence bounds for ß are given by equations (2-14) and (2-15); 

confidence bounds for X by equations (2-16) and (2-17). The input data consists of the Total 

Time to System Failure (TTSFi) data for each i-th failure for each q-th system 

The spreadsheet format on the next page contains the formulas used in the model for 

determining MLEs for ß and X, along with their respective upper and lower confidence limts for 

a sample populatioa It contains simulated failure times (TTSFi) for K=3 systems and N=10 

failures each To use the model, the ITS^s for each system are copied from the MIMMS-AIS 

data and inserted into the appropriate columns with the "TTSFi" headings. All other values are 

automatically calculated based on the time truncated, conditional MLE formulas and ± confidence 

intervals presented in Chapter H. The number of columns can be copied for as many systems as 

required subject to the limitations of the software and computer memory. 

When data is not available from the system "birth" (T0=0), the TTSFiS must be rescaled 

as discussed in Chapter H. The data for the three sample systems was purposely designed to show 

one system with an "improving" failure rate, one with a constant failure rate, and one with a 

deteriorating failure rate. 

The spreadsheet computes the individual system MLEs for ß and X, which are recorded 

just below the system serial numbers. At the top of the spreadsheet, the pooled values of ß and 

X are provided for the entire sample. The pooled values are used to compute the ROCOF for the 

sample populatioa If the individual systems show a wide range of differences, it may not be 

appropriate to use the entire sample to compute the pooled MLEs. For example, if the results 

indicated that 
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half of the systems show "improving" trends in the failure data, while the other half were 

deteriorating, the MLE for ß would probably be very close to one. indicating a fleet-wide linear 

failure intensity. Therefore, additional analysis would be required to determine the causes of the 

differences in the failure intensities (i.e., operating conditions or age) of the equipment. 

A plot of the simulated data for the three systems represented in the spreadsheet is 

presented in Figure 4.2. The plot is provided to illustrate the shapes of the cumulative failure 

curves based on systems at various stages in their life-cycles, and is useful for estimating the 

general condition of the equipment: 
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0 20000 40000 60000 80000 

Miles at Failure 

. x . _ System #1  + System #2 .— System #3 

Figure 4.2 Sample Failure Plots for Simulated Data 

As shown in Figure 4.2, System #1 is deteriorating, since it has an increasing failure 

intensity based on output from the spreadsheet model. Its value for ß = 2.24, and LaPlace 

(U) = 1.57. Graphically, the TTSFjS show a convex cumulative failure curve with respect to the 

origin. System #2 has ß = 0.87 and U = -1.38, indicating a decreasing failure rate (system 

improvement); and graphically has a curve concave to the origin. System #3 has ß = 1.2, 

indicating a nearly linear failure rate, and U=0, indicating no trend in the failure arrival patterns. 

In general, the "status" of a system during its life-cycle can be described based on the values of 

U and ß, summarized as shown in Table 4.1: 
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Life-CVcle Phase ß Value LaPlace Test Statistic (U) 

Burn-in, debugging, work- 
hardening 

ß<l U<0 

Useful life/ random failures ß«l u = o 
Deterioration ß>l U>0 

Table 4.1 Interpretations of Values for ß and U 

The data truncation of the TTSF/s and TTSFn's must be considered for the systems in 

order to reach meaningful conclusions. For example, comparing failure truncated data on a system 

with ten failures between zero and 20,000 miles with another system which had ten failures 

between 80,000 to 90,000 miles would not result in meaningful conclusions (Crow, 1975). The 

first system might be in its "burn-in" phase and would show an improving ROCOF, while the 

second system may be in a deterioration phase and would show a deteriorating ROCOF. In both 

cases, the true values of ß and X would be different. Evaluating "brackets" of TTSF data for the 

same systems over different intervals in the life-cycle will yield different values for ß and A, as 

the "bathtub" curve shown in Chapter II indicates. For this analysis, time truncated data for only 

those vehicles with sufficiently high mileages (vehicles with more than 40,000 miles) is used, so 

that the systems used to derive the MLEs are assumed to be in the same phase of their life-cycle. 

As a further check, a comparison of the vehicle-by-vehicle LaPlace statistic may be used to ensure 

that systems are in the same phase of their life-cycles, prior to drawing conclusions. 

D. FORECAST EXPECTED FUTURE MAINTENANCE COSTS 

Once the MLEs of ß and A. are obtained, the ROCOF p(t), given in equation (2-6) can 

be defined. If the LaPlace test statistic indicates that a system is deteriorating, it is assumed that 

the system will continue to deteriorate at the rate p(t) even when minimal repairs are performed 

The expected number of failures are then extrapolated using V(t) for a future period of time. 

Equation (3-2) can be used to forecast future costs over intervals, such as simulated annual 

mileage equivalents. A distribution of annual mileage equivalents can be approximated from the 
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MMMS data by computing the difference between individual vehicle meter readings over 365 

day periods. For this thesis, it is assumed that if the system is deteriorating, that the ROCOF p(t), 

can be extrapolated using the same values for ß and X over a reasonable number of future periods 

(Bain, 1978). 

1. Cost Stream Assumptions for the Present System 

If the system is deteriorating, it is assumed that maintenance costs will increase rapidly 

under the "do-nothing" alternative. Fuel, crew, and overhead costs such as facilities and war 

reserve spares costs are assumed to be the same for either alternative, so they are not considered 

in this analysis. If they are not the same for each alternative, then the additional costs/savings 

must be reflected in the break-even analysis. The "failure" cost is defined in equation (4-1). The 

forecasted annual maintenance cost is defined in equation (4-2) as the number of expected failures 

per year times the cost per failure plus scheduled maintenance costs. For this model, semi-annual 

scheduled preventative maintenance is assumed. The expected number of annual failures is driven 

by forecasted annual mileage. Of course, annual mileage varies widely for individual vehicles and 

among fleets of vehicles, therefore a distribution of annual mileage is used as an input variable 

into the total cost equation, and evaluated using the "Crystal Ball" software or other simulation 

techniques. For example, the annual mileage distribution from the MMMS data on the 

HMMWVs was run through Best Fit, resulting in a Lognormal distribution with [i = 6970, and 

cr= 7650 miles. Other assumptions include: 

The distribution and parameter values of the input variables based on the MIMMS 

data are presented in Appendix B. 

Nominal discount factors for net present value analysis are obtained from OMB 

Circular A-94 annual supplement (OMB, 1993). 

• Costs are in then-year dollars. 

2. Cost Stream Assumptions for the Ovemaul/ Buy New Alternatives 

The decision whether to keep the current system and continue to perform minimal repairs 

(the "do-nothing" alternative) or to buy or overhaul can be made using break-even analysis of the 

O&M cash flows. Although cost estimates may be available for the unit costs of rebuild or buy- 

new options, estimates about annual O&M costs for those alternatives may not be available, 

therefore a few assumptions need to be stated. For this analysis, the annual O&M costs associated 
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with the overhaul alternative are assumed to be the same as when the system was "new." The 

same cost stream starting at T0 (not including inflation factors) is then added to the cost of 

overhaul, and is used for that alternative. The effect of the life extension is most likely unknown, 

but may be estimated as 80% of the original useful life. 

Ideally, the reliability data and costs of the existing system would be used to compute the 

reliability and costs after its overhaul. That is, the same failure intensity for the original system 

would apply after overhaul, reset to "as new" or T0, given that brand new but same components 

are replaced. (In most cases, better quality parts or component improvements are replaced during 

overhaul). Since O&M costs are not known for the system after overhaul, the relationship used 

by the U.S. Army TACOM shown in equation (4-3) is used to estimate the as new HMMWV 

O&M costs reset to T0 (TACOM, 1989). For the HMMWV, the annual cost equation is: 

C =[mA+ b]x + k C4"3) 

the values given for the M998 HMMWV for the variables are: 

m: slope = .0554 

b:  constant     = .1436 $/year 

k:   constant     =318$/year 

A: Age = age of the vehicle in years 

x: mileage: mileage is simulated using annual mileage equivalents, as discussed 

in the previous sectioa 

Equation (4-3) above does account for fuel, crew and other costs, however since these 

costs are reflected in all three variables (slope, intercept, constant), there is no way to rescale this 

equation to only reflect parts and labor (i.e., direct maintenance) charges. Since it is the only data 

available to approximate HMMWV costs since T0= 0, then it is used as the best available cost 

comparison. Ideally, the system's actual life-cycle costs would be known for such analysis. 

3. Rough Estimates 

Equation (2-18) provides the optimal overhaul/replace time, which minimizes the expected 

maintenance costs of rninimal repairs (Barlow and Proschan, 1965). It is an extremely simplified 

equation, and should only be used as a guage for rough estimates. The parameters ß and A, which 

were calculated earlier are input into (2-19) and the optimal system replacement interval T* is 

51 



obtained. Equation (2-19) similarly, is a highly simplified equation which approximates the 

estimated life expectency of a system based on linearly increasing annual maintenance costs. 

These figures can be used as a check to the break-even analysis, but should not be used 

exclusively for decision making purposes. 

E SUMMARY 

Maintenance data from MMMS-AIS can be used to estimate the failure intensity of 

Marine Corps systems, using the spreadsheet model presented in this chapter. MLEs for the 

parameters of the ROCOF can be used to forecast the expected number of failures over future 

intervals. The MIMMS-AIS data also provides measures of the direct costs of failures, which are 

multiplied by the expected number of failures to obtain total annual cost forecasts for systems. 

The advantage to using the ROCOF forecast for future periods rather than simple linear 

approximation methods is that deterioration may cause failures to occur at increasing rates, in 

which case an exponential relationship may provide a more accurrate basis for decision making. 

Using the forecasted cost streams, break-even analysis can be used for decision making between 

the "do-nothing," overhaul, or buy-new alternatives. The next chapter presents a case analysis of 

this model using MIMMS-AIS data for a sample population of HMMWVs from West Coast 

Marine Corps units. 
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V. CASE ANALYSIS OF HMMWV FAILURE DATA 

A. PURPOSE 

The purpose of this chapter is to present an example of the model presented in Chapter 

IV applied to MMMS data on the M998A1 series HMMWV. The HMMWV is currently in its 

mid-life-cyde in the Marine Corps; most of the HMMWVs are roughly eight years old An 

extended service-life program (ESP) is currently being programmed for the HMMWV fleet, which 

includes a block upgrade of most major components. Applying this model could validate the need 

and identify a time horizon when the ESP becomes economically desirable. For the purposes of 

this chapter, the ESP is referred to in terms of "overhaul," although it actually entails more than 

the overhaul, as defined in Chapter II. The objectives include; 1) identify whether the sample of 

HMMWVs shows any trend in the failure data, 2) computation of the parameters ß and A, so that 

expected failures and failure intensities can be estimated, 3) provide supporting estimates to help 

the program managers make a decision about when to perform the ESP. 

B. ESTIMATION OF THE HMMWV RATE OF OCCURRENCE OFFAILURES 

This section discusses the process described in Chapter TV section B, 1, which is used to 

convert the MIMMS data into a form that can be used to obtain the MLEs needed to estimate the 

ROCOF and expected failure functions. 

1. MIMMS-AIS Data Preparation 

The first step is to filter the MIMMS-AIS data to a form that can be used with the MLE 

Estimation Spreadsheet model to compute the individual system MLEs, "pooled" sample MLEs, 

and the LaPlace test statistics. The specific data requested for this thesis were the MIMMS-AIS 

database records for "critical maintenance" EROs on the M998 HMMWV. It is assumed that parts 

with "Combat Essentiality Code" (CEC) = 0, 1, 5, or 6 would cause system operational mission 

failures if they failed. Further, Material Usage Code (MUQ = "7" was specified (repair parts and 

secondary repairables). The other MUCs specify scheduled maintenance parts (such as filters), 

collateral equipment, and modifications; these do not constitute mission critical system failures. 

All maintenance category codes were included in the initial query. All maintenance category 

codes were included, although only maintenance category codes "M' and T" in MIMMS reflect 
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critical maintenance, however these status codes are normally downgraded to "routine" after the 

critical repairs are completed and prior to closing the ERO, as discussed in Chapter m. 

Records with suspect meter-readings were filtered out prior to analysis, since these cause 

erroneous failure results. Lastly, EROs that showed a defect-code indicating that the primary 

meter was replaced were deleted from the data file prior to analysis. In all, roughly 25% of the 

raw data was purged before any analysis even started. 

The data file used for this thesis contained records only for the U.S. West Coast regional 

units. After eliminating the "bad" data, a total of 3040 records representing 276 unique vehicle 

serial numbers resulted. The 3040 total records reflects both the fact that most serial numbers had 

multiple ERO history files over the 54 month sample period, and that most EROs had multiple 

replacement parts (which are separate database records) recorded against them 

The database records appear as rows in both the Query and Excel (spreadsheet) software, 

which represent either unique Equipment Repair Order (ERO) records, or the parts ordered under 

the ERO. (One ERO is always associated with one serial number for principal end items). For 

example, if seven different parts were requisitioned under one ERO, seven "rows" of data will 

appear all with the same ERO and equipment serial number in the spreadsheet. These records will 

all show the same meter-reading, labor-hours and open and closed dates for the ERO. The parts- 

trailer records (i.e., part name, cost, order-date) are unique for those parts. To illustrate, an 

extract of seven fields from the raw data is provided below. The extract shows how the raw data 

(selected fields) file appears after sorting: 

RAC 
MIM001 
MIM001 
MIM001 
MIM001 
MIM001 
MIM001 
MIM001 
MIM001 
MIM001 
MIM001 
MIM001 

SERIAL* 
532282 
532282 
532282 
532282 
532282 
532282 
532282 
532282 
532282 
532284 
532284 

ERO 
PG433 
PG433 
PG433 
PG519 
PG581 
PG581 
PG424 
PG424 
PG424 
WNN20 
WNN20 

METER 
18151 
18151 
18151 
18152 
12544 
12544 
20860 
20860 
20860 
25056 
25056 

DLHOURS PARTNAME PART COSTS 
2 PUMP ASSEMBLY,POWER 40.21 
2 DOOR ASSEMBLY,VEHIC 89.22 
2 GASKET 3.38 
4 RADIATOR,ENGINE COO 329.00 
10 PARTS KIT,HAND BRAK 22.63 
10 SEAL,NONMETALLIC SP 2.52 
0 ROTOR,DISC BRAKE 7.64 
0 PARTS KIT,BALL JOIN 16.45 
0 STARTER,ENGINE,ELEC 322.00 
4 ROTOR,DISC BRAKE 7.64 
4 IMPELLER, FAN, AXIAL 185.00 

The first three records in the above sample all pertain to a unique ERO on the same serial 

number (532282), under which three parts were ordered. The fourth record is for a new ERO on 
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serial number 532282. The tenth record is a unique serial number (532284) and a unique ERO, 

and starts a new data record. 

The next step was to sort the entire database by; 1) serial number, 2) date-received-in- 

shop, 3) primary meter reading. Although Chapter HI discussed problems with the ERO open and 

close dates and the order in which the meter readings would appear, it turned out to be easier 

simply to sort the meter readings for each serial number in ascending sequence. This procedure 

does not violate the chronological ordering discussed in Chapter n, since the meter readings 

increase with time/usage. The chronological sequence of the various open and close dates of the 

EROs becomes too much of an administrative burden to be concerned with, and does not have 

an impact on the failure data. 

Four primary logic counters were used either to count records that met a criteria, or as 

flags to highlight other interests: 

NAME PURPOSE 

FLAG 1 Distinguishes unique EROs and unique serial numbers. 
Values are "2" if the record is both a unique ERO and 
serial number than the previous record "1" if the record 
is a unique ERO but same serial number as previous 
record; "0" if the record is a parts-trailer for the same 
ERO as the previous record 

FLAG 2 Compares the date closed of the next unique ERO number 
to the open date of the current ERO record; used to 
highlight suspect data. 

#FAILURES    Counters used to indicate the total number of failures 
accrued for a unique serial number. This criteria is used 
to find serial numbers with greater than or equal to "N" 
failures in order to obtain failure truncated data. 

CUML ERO$   Accumulates the total cost of parts on an ERO-by-ERO 
basis. Straight parts charges for individual items are 
contained in the raw MMMS-AIS data, and need to be 
summed for each ERO. 

Other minor conversions are required such as for Julian dates, parts costs and labor-hours. 

These formulas are provided in Appendix A 
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Once the data is prepared, the next step is to identify serial numbers with sufficient usage 

and a sufficient number of failures to obtain the MLEs for ß and k There is a tradeoff between 

the number of unique vehicle serial numbers (K) which have a specified number of recorded 

failures needed to obtain confident pooled MLEs, and the number of observed failures (N) 

recorded against each serial number. The greater the value of N desired, the smaller the number 

K of serial numbers will meet that criteria in the database. For N too low, the MLE results are 

meaningless. The key is to select a data set which yields reasonably high values for N and K, 

since the degrees of freedom that determine the confidence intervals around the MLEs are 

determined by the total number of pooled failures (M). Recall that equations (2-14) through (2- 

17) are the lower and upper confidence limits for ß and A, respectively, and all have degrees of 

freedom driven by M 

In Excel, the "AutoFilter" option allows such queries to be performed easily. To get an 

idea of the range of data, first records are filtered with "greater than" specified mileages, for 

example, show records with greater than 50,000 miles. This step provides a basis for where the 

data should be time truncated for the analysis. The next step is to identify individual system serial 

numbers with a certain number of failures, e.g., N > 8 failures. This is done by setting the criteria 

for the "# FAILURES" column to a specified value. Within the file used for this thesis, among 

the 276 unique serial numbers, only 19 of those showed greater than seven mission critical failures 

recorded. Only two serial numbers showed N > 10 failures. The tradeoff of K and N for this 

analysis resulted in K = 32 systems with N > 6 failures each. Any less than six failure 

observations would not have allowed for a meaningful analysis, since trends in the total time to 

system failure data (TTSFiS) would not be apparent based on fewer data points. 

Finally, the meter reading data (TTSFiS) for each of the K = 32 serial numbers with N > 

6 failures was extracted from the data file, and copied into the MLE estimation spreadsheet similar 

to the one presented in Chapter IV. 

A separate database file provided by the HMMWV inventory manager contained 

manufacturing and fielding dates of the Marine Corps" HMMWVs. A query for these 32 serial 

numbers indicated that all of them were fielded during 1986. Since all of the systems are the 

same age (eight years old) and operated in West Coast Fleet Marine Force Units, it is assumed 

that they all are in roughly the same stage of their life-cycle. 
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2. Investigate for Dominant Failure Causes 

Prior to beginning any detailed trend or reliability analysis, primary failure causes are 

investigated in order to eliminate the potential for making unnecessary program decisions. One 

purpose is to establish that the system under question is sufficiently complex enough to use the 

assumptions stated in Chapter m. Another reason is to avoid making a decision to overhaul or 

replace a system due to frequent failures, when the primary cause of those failures may be due 

to a few but critical substandard components. For this thesis, a Pareto analysis was done for all 

of the parts in the database. This process was simplified using the "Pivot Table" add-in program 

in Excel, which creates a transposed array of specified data fields, and automatically totals any 

fields desired, either vertically or horizontally. Using the pivot-table add-in, the sample data was 

used to create a Pareto distribution of parts sorted by usage. Appendix C contains the results of 

the Pareto analysis. 

3. Computation of the Maximum likelihood Estimators for ß and X 

Maximum likelihood estimates of ß and X for each system were obtained using the MLE 

Estimate Spreadsheet presented in Chapter rv, based on the TTSF data for the K=32 systems. 

The box at the top of the spreadsheet shows the pooled MLEs for the sample population. An 

extract of the MLE estimation spreadsheet for this data set is contained in Appendix B. Values 

for the pooled MLEs are summarized in Table 5.1: 

Parameter LCL MLE UCL 

P 1.393 1.597 1.812 

X 4.3 x 10-7 5.0 x lO"7 5.7 x lO"7 

Table 5.1 Conditional Pooled MLEs for the Sample 

4. Trend Analysis 

Chapter TV introduced the sample MLE estimation spreadsheet which computed the 

LaPlace test statistic (U) for trends of the TTSFj data, based on equation (2-9). Two systems of 

the 32 total systems had LaPlace statistics indicating decreasing failure rates (DFR), or U < 0. 

Speculation might suggest that these two serial numbers might be vehicles assigned to unit 

Commanding Officers.   Traditionally, Marine Corps motor-pools tend to place the highest 
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emphasis on the CO's vehicle. All of the other systems had LaPlace statistics indicating system 

deterioration, or increasing failure rates (IFR), where U > 0. Results are summarized in Table 5.2. 

Plots of the mileage to cumulative failures (see Appendix B) also indicated increasing failure rates. 

Based on the predominant positive values of the LaPlace statistics for the individual systems, the 

conclusion is that this HMMWV sample population is deteriorating. The NHPP assumption is 

made regarding the failure intensity of the sample population, and therefore the ROCOF model 

is used to evaluate the failures, and to forecast expected failures for future intervals. 

q Serial # LaPlace: ß X Ttend 

1 535199 2.038 1.851 6.00E>07 IFR 
2 535212 1.452 1.448 1.50E-05 IFR 
3 535393 2.497 1.125 0.00019 IFR 
4 537144 2.041 1.939 1.90E-07 IFR 
5 537290 0.075 0.528 0.0214 IFR 
6 537340 3.091 1.231 0.00017 IFR 
7 537415 1.52 1.618 1.60E-06 IFR 
8 537463 -0.471 0.373 0.14724 DFR 
9 537526 0.197 0.908 0.00053 IFR 
10 537561 2.757 2.873 1.00E>11 IFR 
11 537563 1.98 1.726 1.20E-07 IFR 
12 537564 0.26 0.451 0.0938 IFR 
13 545002 -0.436 0.798 0.00235 DFR 
14 545023 2.423 1.934 2.40E-08 IFR 
15 545025 2.783 2.863 1.30Erll EFR 
16 545066 2.986 3.217 5.80E-14 IFR 
17 545131 2.512 2.006 1.0OEvO7 IFR 
18 545143 0.154 1.044 0.00018 EFR 
19 545152 1.463 2.378 9.20E-09 IFR 
20 535205 1.923 1.929 6.60E-07 IFR 
21 535209 3.157 3.188 UOE-12 IFR 
22 535210 0.708 0.61 0.03691 EFR 
23 535211 1.113 0.896 0.00266 EFR 
24 536300 3.886 6.379 5.70E-23 IFR 
25. 536493 1.478 1.553 5.50&06 EFR 
26 536504 2.56 2.228 7.60E-09 EFR 
27 537384 3.328 2.822 5.60E-11 EFR 
28 537400 2.29 1.123 0.00023 EFR 
29 545092 0.106 0.89 0.00032 EFR 
30 537497 3.588 4.783 1.86B-17 EFR 
31 569078 2.657 2.979 4.99E-13 EFR 
32 545037 0.609 0.767 0.004 EFR 

Table 5.2 Individual System MLEs and LaPlace Statistics 

IFR = increasing failure rate, DFR = decreasing failure rate. 
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Figures 5.1 and 5.2 illustrate the increasing failure rate associated with the pooled values obtained 

for ß and A. They provide a graphical method for estimating the number of failures as mileage 

increases for the vehicles. Figure 5.1 shows that the failure intensity increases with age, 
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Figure 5.1 Pooled Sample Failure Intensity 

and Figure 5.2 shows the expected number of cumulative failures: 
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C COST ANALYSIS OF THE ALTERNATIVES 

Cost analysis of the "do-nothing" or overhaul decision alternatives is done using a net- 

present-value (NPV) comparison of the two estimated maintenance cost streams. For a starting 

point, a seventeen year economic useful life was assumed (USMC, 1994). Assuming that overhaul 

adds an additional 80% of seventeen years to the present age (i.e., eight years old in 1994), a 

fourteen year extended life was used as the period for the decisioa In other words, the cost- 

streams would be compared over a fourteen year life, starting in 1994. 

1. Assumptions About Input Variables 

Cost variables, or factors that derive cost variables, such as annual mileage, were defined 

as statistical distribution for use with the Crystal Ball add-in. The input variables in the 

spreadsheet are referred to as assumption cells in Crystal Ball. As stated earlier, the distributions 

for these were derived from empirical cost data from the MMMS-AIS data files. Reasonable 

bounds were placed on the ranges of the assumption variables, based on the author's judgement. 

In most cases, the upper bound was set at three standard deviations for the particular assumption 

variable, and the lower bound set as the minimum, non-zero value observed in the sample used 

to derive the assumption variable. Table 5.3 summarizes the input variables and assumptions used 

for the cost analysis (detailed statistics are provided in Appendix B): 
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Assumption Variable Likely Distribution Parameters 

Annual Mileage Lognormai u=6970 miles, o=7650 miles 

Unscheduled Maintenance Cost 
perERO 

Triangular Likeliest = $982 

Labor Hours per ERO; 
Unscheduled Maintenance 

Triangular Likeliest = 7.03 hours 

Scheduled Maintenance labor 
hours per ERO 

Lognormal u= 1.81 hours, G=1.45 hours2 

Scheduled Maintenance cost 
perERO 

Triangular Likeliest = $82 

Composite hourly "weighted" 
labor rate 

Triangular Likeliest = $11.84/hour 

Overhaul Costs Uniform $23,400 - $32,600 

MLEß Triangular 
v. 

Likeliest = 1.60 

Table 5.3 Input Variable Assumptions 

Several difficulties were encountered regarding data for the input variables. First, overhaul 

costs were difficult to obtain on the HMMWV because of proprietary business data. The Army 

and Marine Corps Logistics Depots are in competition with each other and private contractors to 

perform depot level maintenance on equipment. One source (U.S. Army, 1994) provided a range 

of costs for the HMMWV rebuild vs CUCV re-buy program decisioa Another "anonymous" 

source provided a likely range for rebuild costs. These two estimates together comprise the 

overhaul cost assumptions. Secondly, since MIMMS-AIS data does not exist for the HMMWV 

prior to 1990, the origind reliability and life-cycle maintenance costs could not be determined for 

use as the "after overhaul" reliability/cost assumptions. Costs are known for the period 1990 to 

1994 based on the MIMMS data, but this period was shown to be during the weamut phase of 

the system, therefore these costs may not reflect the reliability of the system over the first eight 

total years of life. For this reason, the cost relationship used by the U.S. Army (TACOM, 1989) 

TWVULDP shown in equation (4-3) was used to reflect the maintenance cost after overhaul, 

starting with time reset to zero. Ideally, the estimated reliability function starting at time equals 

zero would be used to approximate the maintenance cost-stream after overhaul.  Lastly, cost 
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estimates were not available for a fleet-wide HMMWV replacement, therefore that alternative was 

not analyzed. In any case, the same approach as in the overhaul alternatives would be used to 

analyze the buy-new option. 

2. Assumptions About me Output Forecasts 

Forecast Cells are defined as the output, or solution cells that are being solved for to 

assist with decision making. In this case, five forecast cells were defined: 

NPV of the "do-nothing" option 

NPVs of the cost-streams associated with the 1994, 1996, and 1997 overhaul 

scenarios.   The cost-streams represent the net difference between the cost of 

overhaul minus the cost of the do-nothing values for each year during the 14 year 

life-cycle periods. 

Computed value of "Optimal Replacement Interval" (T*) based on equation 

(2-18). 

Computed value of the Life Expectancy (LJ based on equation (2-19). 

After the NPV spreadsheet was constructed, the Crystal Ball macro was run for 1,000 

iterations. The macro generates statistics for the output or forecast cells, and displays forecast 

histograms. The results of the 1,000 iterations are provided in the "Crystal Ball Report" in 

Appendix B, but is summarized in Section D to follow. 

3. Cost Model Setup 

The spreadsheet on page 65 shows the setup of the cost analysis. Input variables are 

highlighted in bold numbers, and appear as the means of the input distributions for the cost 

assumptions. All other cells are calculated by spreadsheet formulas. The number of critical 

failures per year is derived by evaluating equation (5-3) over each annual mileage equivalent 

interval. The NPVs shown on the spreadsheet are computed using the standard method, and 

represent a fourteen year period. The frequency charts generated by Crystal Ball provide a basis 

for evaluating the range of values for each of the forecast cells. Note that all of the dollar values 

appearing on the spreadsheet represent costs. 

The pooled MLEs shown in Table 5.1 are used to define the ROCOF of the sample, and 

are used to forecast expected failures in the future. Since the pooled MLE value for ß is greater 

than one, the cumulative number of failures will increase at an increasing rate with usage, thus 
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causing maintenance costs to increase rapidly.   Equation (5-2) gives the pooled estimate of the 

ROCOF. where: 

p(t) =(5.09xl0-7X1.597Xl0-597) (5"2) 

and the expected number of failures in the interval (t, t+dt) is evaluated as a definite integral, 

V(t) = (5.09 x lO-7)^1597)( ** <5"3) 

Equation (5-3) is used in the spreadsheet cost model (presented in the next section) to forecast the 

expected number of failures over future annual intervals. 

The conversion of mileage to calendar time is done using an annual mileage distribution, 

discussed in Chapter IV. The mileage distribution was input as an assumption variable for use 

with the Crystal Ball add-in, and used for calculating values of cells containing mileage figures, 

such as equation (5-3) above. The value for the mileage used with the do-nothing alternative was 

rescaled to reflect (annual mileage) x (8 years) so that the resulting expected number of failures 

would represent the system's actual age. With estimates of the ROCOF and expected failure 

functions defined, projected maintenance costs can now be forecasted for annual mileage 

equivalents. 
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The spreadsheet shows four cost streams computed. All figures are expressed as costs. 

The first is the "do-nothing" alternative, which is calculated for a fourteen year period from the 

present. The other cost-streams represent performing the overhaul during 1994, 1996 and 1997, 

respectively. The NPVs of the cost streams are computed for all three alternatives based on OMB 

Circular A-94 (OMB, 1993) nominal discount rates. Internal Rate of Return (IRR) figures are 

provided based on the difference between the cost of performing the overhaul and the cost of the 

do-nothing policy. The IRR is used as a "tie-breaker" between decision alternatives, and provides 

an idea about the direction in which the costs of the alternatives are moving; i.e., the IRR 

increases as the overhaul is deferred. 

D. ANALYSIS OF RESULTS 

The do-nothing alternative is the preferred option by a close margin, based on the static 

values of the cost estimates for each assumption variable. The NPVs computed for each 

alternative over the next 14 year period are: 

Do-Nothing: -$52,006 

Overhaul in 1994 

Overhaul in 1996 

Overhaul in 1997 

-$58,076 

-$53,938 

-$52,631 

As the overhaul is deferred into the future, performing the overhaul becomes the preferred 

alternative, assuming that costs remain constant. 

Since each of the cost variables are associated with their own distributions, the forecast 

values, such as NPV, are all reflected by unique distributions. The probable range and shape of 

the forecast distribution is generated by simulatioa The Crystal Ball simulation was used to run 

1,000 iterations to generate the NPVs of the decision alternatives. The simulation results validate 

that deferring the overhaul until after 1997 is preferred, based on the range and measures of 

central tendency of the alternatives. Results of the simulation are summarized in Table 5.4: 
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Alternative IRR Mean Median Mode 

Do-Nothing -$106.633 -$28.200 -$16,363 

1994 Scenario 0.4% -$54,192 -$47,675 -$40,220 

1996 Scenario 4.4% -$51,234 -$46.498 -$38,172 

1997 Scenario 5.9% -$50.429 -$46,448 -$44,694 

Table 5.4 Cost Summaries of the Decision Alternatives Based on the 

Qystal Ball Simulation 

The mean value of the cost of the do-nothing alternative ($106,633) is high due to the fact that 

some high values of ß and high annual mileages can be generated based on their distribution 

shapes, and these are variables in the annual cost equation. Likewise, the median and mode for 

the do-nothing alternative are relatively low for the 14 year period because the simulation 

generates mostly low values for the assumption variables mileage, labor-hours, and ß. The annual 

cost equation for the do-nothing alternative is particularly sensitive to the value of ß, since it is 

an exponent and drives the number of expected failures. It is also sensitive to annual mileage, 

and the cost of overhaul. Cost ranges will be wide due to high variability in the annual mileage. 

The high cost of overhaul is ultimately the determining factor driving the decision, and since the 

cost is high, and the cost of the "minimal repairs" maintenance policy does not increase 

dramatically, the decision alternative favors deferring overhaul into the future. 

In comparisoa the simulated NPVs increase as the overhaul is deferred into the future. 

The "static" NPV for the 1997 overhaul cost-stream is nearly identical to the cost of the do- 

nothing alternative, which implies that the cost-stream for overhaul during or after 1997 is more 

economical than doing nothing. Although the median and modal values are higher for the 

simulated overhaul NPVs than the do-nothing alternative, they have less range and variability in 

annual maintenance costs after overhaul, which leads to more confidence in the decision to 

perform the overhaul. 
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1. When to Oveihaul? 

Unless there are operational reasons to overhaul or upgrade the HMMWV earlier, the 

optimal time to overhaul is between 1997 and 2001 when the NPV for the overhaul cost-stream 

begins to be less than the do-nothing cost-stream Referring to the cost model spreadsheet, the 

net difference between the NPVs of the overhaul options and do-nothing decreases for each year 

the overhaul if deferred. After 1997, the net difference between the overhaul and do-nothing 

alternatives actually becomes a cost savings (which is not shown). The impact of any cost-savings 

could be significant, since there are over 14,000 HMMWVs in the active fleet. Even marginal 

savings realized from deferring the overhaul are translated as potentially hundreds of thousands 

of maintenance dollars for the current fiscal year. 

The rough estimate life-expectancy calculated from equation (2-19) indicates 

approximately a seven year period, measured from the present. Further, the optimum overhaul 

interval calculated by equation (2-18) is also shown in the spreadsheet, and indicates a 93,700 

mile interval, measured from time zero. Based on the cumulative annual mileage assumptions, 

this value represents a period between 1999 and 2001, or seven years from the present. The mean 

of the optimum overhaul interval based on the simulation was 129,000 miles. The simulation 

output for these two estimates are provided in Appendix B, and indicate the range and shape of 

the distributions for these values. The results are summarized in table 5.5: 

Mean Median Mode 

Optimal Overhaul Interval 

(miles) 

129,496 89,689 56,583 

Life Expectancy (years from 

present) 

7.5 7.0 6.9 

TaMe 5.5 Rough Estimates of Optimal Oveihaul Inteival and Life Expectancy for the 

HMMWV 
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The mileages shown above for the optimal overhaul interval correspond to a period between 1994 

and 2005 for the first overhaul, a wide range due to the high variability in annual mileage for 

different vehicles. The life expectancy values are approximately seven years, measured from the 

present, which implies that the economic overhaul period is during 2001. Again, it should be 

emphasized that these two figures are used only as approximations to check assumptions and 

validate the NPV/Break-even analysis. 

2. Which Vehicles Should be Overhauled? 

The wide range of overhaul intervals suggests that the fleet should be evaluated on a 

vehicle-by-vehicle basis, based on annual mileage and the values of ß and the LaPlace statistics, 

as calculated in Table 5.2. Such a table could be automated on a fleet-wide basis, and individual 

vehicles be nominated as candidates for overhaul/replace each year based on the highest values 

of these parameters. In other words, vehicles in the worst condition would be flagged, and 

feedback solicited from owning units regarding their actual conditioa The unit commanders 

(owners) must have the final decision regarding their vehicles, since they are in the best position 

to know the actual usage, condition and need for overhaul; however, an automated list of vehicles 

meeting certain criteria would certainly be useful for decision making at the unit level. This 

process would allow expected program costs to be forecasted several years in advance. 

3. Observations About the Sample 

Of the 276 unique serial numbers in the sample, only 32 of them had enough recorded 

failure data available to be able to perform a reasonable trend analysis. It might be argued that 

a non-random sample may not reflect the entire fleet's reliability posture. In other words, these 

might simply be the 32 worst vehicles in the sample. This is probably not true. There are two 

responses; first, a significant amount of data was lost or not available during the period of Desert 

Shield and Desert Storm, therefore a significant amount of failure data is missing. The Deployed 

Automated Support Centers used to process MMMS transactions were not fully operational until 

roughly six months into the deployment, and even after that period, many Marine units did not 

report into the system due to long distances or lack of communication links with the DFASCs. 

Secondly, as Chapter m discussed, there are some limitations in the MMMS-AIS reporting 

system that do not capture all of the potential failure data. The failure intervals used in the 

analysis were defined by the mileages associated with the EROs. Recall that only one mileage 

currently is recorded on the ERO, the mileage at failure, therefore failures that occur while the 
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ERO is open are not captured in MMMS. Sample statistics on the number of ERO days 

(measured from open to close dates) was distributed exponentially with a mean of 139 days. 

Many of these EROs reflected multiple failures. 

To support the statement that the 32 vehicles do reflect the sample population, a second 

measure of critical failure intervals is suggested An alternate definition for a failure interval is 

the difference between when a part is received and when the next part, or a batch of parts is 

ordered. Presumably the next parts are ordered due to a subsequent failure, and it is more 

administratively convenient to order them using an ERO already opea This measure is suggested 

because many of the EROs fall into the category of being "perpetually" open, thus, data about 

when the failures occurred is lost. Assuming that critical parts are ordered roughly the same day 

that the system fails, and that they are applied the same day they are received, the time between 

orders might be a compromise solution to the data problem The database used for this analysis 

consisted of records for 899 unique EROs; 324 of them had four or more "batches" of parts 

ordered under each ERO. That is, counters were used to total the number of records that had 

different order dates for batches of parts all recorded on the same ERO. Roughly one third of the 

EROs represented more than four system "failures" according to this alternative definitioa 

Another argument is based on trends observed from a fleet-wide perspective. A separate 

data file provided by the Reliability Analysis Center contained pre-calculated LaPlace trend test 

statistics (U) for vehicles from the three Regional Activity Centers, representing the entire Fleet 

Marine Force. After screening out suspect values (based on not enough data available), a file 

containing 718 unique serial numbers from the most recent update cycle was analyzed Of those 

serial numbers, 83% of them had values for U greater than zero, indicating that 83% of the sample 

exhibited increasing failure rates. The results are summarized in Figure 5.5: 
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LaPlace Statistics for 718 HMMWVs 

u c a 
3 
cr 
0) 

U Value 

figure 5.5 LaPlace Values for FMF Sample 

Of the 718 vehicles shown in the sample above, 593 of the values are positive, indicating that the 

sample has an increasing failure rate. These results imply that the majority of the fleet of Marine 

Corps HMMWVs are in the deterioration phase. Therefore, one might conclude that the vehicle 

sample reflected by the 32 serial numbers used in this thesis is reflective of the Fleet Marine Force 

HMMWV status. 

4.   Limitations 

The cost model shown in the spreadsheet is highly simplified, and certain assumptions 

would need to be refined. For example, the annual maintenance costs after overhaul were 

computed using the Army's useful life model, however it includes some costs which are not 

included in the do-nothing maintenance cost model, it was used as the best available data for 

illustrative purposes. Further, overhaul costs should also be refined and more data obtained prior 

to making decisions, since the NPV values and IRR are very sensitive to overhaul costs. 
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E SUMMARY 

This chapter presented a spreadsheet model that calculates pooled and individual values 

for the parameters of the ROCOF, which are used to forecast the expected number of failures of 

a sample set of 32 HMMWVs. The pooled MLE for ß was roughly 1.6, therefore maintenance 

costs will increase at an increasing rate. Next, a cost spreadsheet was used to evaluate the 

decision alternatives using NPV and IRR analysis. The decision alternatives can be better 

evaluated knowing the probabilities associated with the forecast values, so Monte Carlo simulation 

was conducted using a spreadsheet add-in program called Crystal Ball. The Crystal Ball results 

indicated that the economic overhaul period consisted of a range of values starting in 

approximately the year 1997 for the HMMWV fleet. Specific vehicles can be nominated for 

overhaul based on their condition, which can be described by the values of ß and the LaPlace test 

statistic (U). By calculating fleet-wide trend statistics, "blocks" of vehicles can be programmed 

for overhaul with several years lead-time. 
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VL CONCLUSION AND RECOMMENDATIONS 

A. SUMMARY 

Economic overhaul or replacement intervals can be approximated based on adequate 

maintenance data The necessary data elements needed to use the approach in this thesis are 

maintenance costs and failure times. If the pattern of time between failures indicates an increasing 

failure rate, then the maintenance costs will increase rapidly, as a function of the failure intensity. 

The main variables affecting the replacement/overhaul decision are the failure intensity and the 

cost. As the exponent (ß) of the ROCOF increases, deterioration occurs more rapidly and 

minima repair costs escalate. Net present value analysis helps to identify the economic 

replacement period. In the case example in the last chapter, NPVs were calculated for scenarios 

that represented alternative overhaul options. The results of the NPV analysis indicated that the 

overhaul should be performed between 1997 and 2001. The main limitation of the approach is 

the validity of the failure data. However with adequate screening, the heuristic techniques 

presented in Chapter III can eliminate the majority of the invalid data before the actual analysis 

is performed. 

The approach to estimating the ROCOF outlined in this thesis is repeatable, and lends 

itself to an automated process. With the exception of the overhaul costs and equipment inventory 

data (manufacturing date, fielding dates), all of the data was extracted through the maintenance 

management database. For the Marine Corps equipment, the MEMMS database is used, and for 

Army equipment, the TACOM Sample Data Collection can be used. The MMMS data for the 

HMMWV was downloaded from mainframe computer files, and all of the subsequent queries, 

computations and simulation were done with a spreadsheet program on a personal computer. 

R CONCLUSION 

Reliability theory can be effectively combined with cost analysis to assist with overhaul 

or replacement policy decisions. The Weibull intensity function adequately describes the material 

condition of equipment, either on an individual or fleet-wide basis. From the failure intensity, 

simulation can be used to forecast expected failures over annual equivalent operating times, in 

order to estimate the associated costs of failures. Overhaul or replacement decisions are analyzed 

using NPV, break-even and internal rate of return analysis to derive the policy decisions. The 
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model presented in this thesis is straightforward in that it is repeatable on a broad basis and lends 

itself to analysis of entire fleets of systems. By incorporating reliability theory into program cost 

decisions, the impacts of replacing or overhauling a type of system too early can be evaluated in 

more detail, and more economical decisions can be made. 

C RECOMMENDATIONS 

1. Design Changes to the Maintenance Management Information System 

Future design changes to the MMMS-AIS or its next generation (PC ATLASS) should 

include a method for capturing meter readings at eachfdlure, even if multiple failures occur 

during the administrative life of the ERO. The ERO form itself presently allows only for input 

of the meter reading at restoration. Dhillon (1988) includes date offdlure as a crucial, yet basic 

element of failure data collection required for valid reliability analysis. A critical failure is 

defined as a condition in which the system became not operational or mission capable, due to the 

failure of a component, and the time of the failure event would have to be translated into 

straightforward terms applicable to data entry. This would be relatively simple to implement; it 

would involve recording the meter reading of the system when certain status change transactions 

are input. Maintenance status changes are already being routinely captured in MDVIMS-AIS. The 

additional input entry (meter reading) along with the status change transaction should not pose a 

significant burden on the maintenance shops. The cost of collecting the additional data should 

not be significant, since the mechanics or technicians working on the equipment usually have to 

physically record other maintenance tasks on the source documents. By recording the mileage at 

failure, the problems discussed in Chapter HI, i.e., long maintenance cycle times, multiple EROs, 

and single mileages at restoration, would be solved. 

2. Maintain Reliable Maintenance Data on Combat Essential Equipment 

Much like the U.S. Army's Sample Data Collection program, the Marine Corps should 

track a sample of specific principal end-items throughout their life-cycle. For combat critical 

equipment systems, called pacing items, a representative sample of them should be closely 

monitored through data reliability programs at selected units. Instead of archiving inactive 

maintenance data on these specified items, automated records should be centrally maintained for 

analysis such as the one presented in this thesis. The cost of data storage on a select sample 

would not be as prohibitive as for the entire inventory. 
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The recommended list of items is contained in the current edition of the Marine Corps 

Bulletin 3000 series directives (MCBul 3000, 1994). A sufficient number of principal end-items 

should be derived statistically for each separate system in the program. Unit maintenance shops 

that maintain the selected equipment would be provided with special instructions, and given 

incentives to report accurately on the equipment. In short, a representative sample of equipment, 

tracked throughout its life-cycle in a controlled data collection setting could alleviate some of the 

reporting difficulties presently experienced with analyzing raw MMMS-AIS data Better input 

data will lead to more conclusive results for program decisions. 

3. Track Equipment Status After Ovemaul 

Depot level maintenance production is done in batches, and no centralized records are 

currently kept regarding specific items overhauled. Consequently, valid data does not exist except 

at the unit level, regarding the status of Marine Corps equipment after rebuild, EROAN or ESP. 

There is no way to measure the effects of overhaul on reliability or the extent of life extension 

without such data. It is recommended that the equipment identified for the "data reliability 

program" described above also be specifically tracked after rebuild or ESPs are performed in order 

to measure the effectiveness of the overhaul program. In some cases the Army has found that 

vehicles were actually worse off after rebuild than before (Lee, Puzzuoli and Hoogterp, 1975). 

4. Periodic Status Reviews 

A periodic review of the principal end items described above should be conducted to 

validate program plans. The values of ß and the LaPlace statistic for the individual vehicles 

shown in Table 5.2 provide a qualitative description of the material condition of a sample of 

equipment systems. Such a table could be automated and generated for the entire fleet or for the 

controlled sample described above. Table 4.1 provides interpretations that can be used to quickly 

obtain a picture of the fleet based on the values of these two parameters. This approach quantifies 

measures of deterioration that are otherwise estimated by intuitioa While it is not a substitute 

for good intuition, it is another element of information to support decision making. As the general 

trends of these values change, the data should be compared against alternative policies, on the 

basis of program priority and the essentiality of the combat system. 
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5. Evaluate Causes of Data Enny Problems 

Further study should be done to identify problems with data entry. For example, accurate 

reporting may be too difficult in terms of busy shop operations, therefore short-cuts and work- 

arounds become the routine. A lack of user-friendliness or tedious input processing procedures 

may also be reasons for inaccurate data. Ongoing, quality training of maintenance management 

supervisors, shop supervisors and clerks should be emphasized at all levels. A Total Quality 

Leadership approach to improving the maintenance data input could be implemented at over the 

organizational spectrum from the small shop to the HQMC Maintenance Policy section level. 
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APPENDIX A. SPREADSHEET FORMULAS AND LOGIC FLAGS 

A. PURPOSE 

This Appendix provides the spreadsheet formulas used in Microsoft Excel to analyze the 

MMMS-AIS data. Formulas are needed to convert certain data values, make to comparisons 

between selected fields, or to flag specified criteria The left column represents the spreadsheet 

column in which the field name appears, and is provided only as reference for the cell addresses 

described in the formulas. Data records appear as rows in the spreadsheet. Fields identified with 

a "D" indicate data fields compiled directly from the "raw" database. If the field is a data type, 

the field description and number of characters (n) is provided. All other fields are defined by a 

spreadsheet formula Fields identified with a "C" stand for "counter" or computed value, and "L" 

stands for "logic" field. 

To use the formulas in the spreadsheet, the database is first read into a new spreadsheet. 

Columns are inserted into the database, as required. The formulas are input into the first blank 

row under the header, and then copied down the entire range of rows containing data 

FIELDNAME VALUE or FORMULA 

(# character) 

DESGRIPnON 

A RAC D Alpha-numeric (6) Regional Activity Code 

B SERIAL # D Numeric (6) USMC Registration number of 

the vehicle 

C ERO D Alpha-numeric (5) Equipment Repair Order 

D METER D Numberic (10) Primary Meter Reading; 

equipment operating time 
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G 

H 

I 

K 

L 

M 

N 

O 

FIELDNAME VALUE or FORMULA 

FLAG 1 L     =IF(B2=B1,IF(C2=C1,1,0),2) 

FLAG 2 IV    =IF(E2=1, 

C     IF(HKH2,"LOOK",1),0) 

DATERECIN D    Numeric (5) 

DATECLOSED        D    Numeric (5) 

MBLABHRS D    Numeric (5) 

DLHOURS C     =12/10 

DATEORDERED     D    Numeric (5) 

DTRCVDCANC       D    Numeric (5) 

ORDR YEAR C     =VALUE(LEFT(K2,2)) 

ORDRDAY C     =VALUE(RIGHIXK2^)) 

REC YEAR C     =VALUE(LEFT(L2,2)) 

DESCRIPTION 

Compares the serial number and 

ERO number in previous record. 

"0" = both are same; "1"= unique 

ERO, "2"= unique serial 

Checks if the next unique ERO 

was closed prior to an older ERO 

being closed. 

Date the ERO was opened. 

Date the ERO was closed. 

Total direct labor hours expended 

on the ERO. 

Necessary conversion, due to 

decimal placement of 

MHABHRS. 

Date part was requisitioned. 

Date part was received at the 

unit. 

Julian date conversion to numeric 

value for subtraction or 

comparison of dates. 

Julian date conversion. 
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FIELDNAME 

P RECDAY 

Q        AREQLAG 

R        ÄNEXTREQ 

NEXTREQ 

T        PARTNAME 

U        PARTSCHG 

V        PCOSTS 

W       CUML EROS 

VALUE or FORMULA 

C     =VALUE(RIGHT,L2,3)) 

C     =IF(02=M2,P2-N2,IF(02= 

M2+1), ((365-N2)+P2), 

IF(02=M2+2),((365-N2)+P2), 

IF(02= M2+3),((365- 

P2)+N3+365)))) 

C     =IF(02=M3,N3-P2, IF(03= 

M2+1), ((365-P2)+N3), 

IF(03=M2+2), ((365- 

P2)+N3), IF(03= 

M2+3),((365-P2)+N3+365)))) 

C     =IF(S2<=1,R2,"") 

D    Character (19) 

D    Numeric (11) 

C     =(U2*AA2)/100 

C     =IF(E2=0,V2+V1,V2) 

DESCRIPnON 

Used to subtract the order date of 

the part from the received date to 

compute delivery delay time. 

Used to compute the difference 

between the received date of the 

current part and the order date to 

the next part. Could be a second 

measure of time between failures. 

If the ANEXT REQ is negative, 

leave blank, else write the value 

of the difference in order days. 

Used to construct histogram. 

Description of the part being 

ordered. 

Cost of the part. 

Cost time quantity; and 

adjustment due to decimal 

placement of PARTSCHG. 

Accumulates parts costs for 

unique EROs. 
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FIELDNAME 

X        ERO COST 

VALUE or FORMULA DESCRIPTION 

Y        CUMLSER# 

Z        SER#COST 

AA     QTY 

AB      ECH 

AC      FAILCOUNT 

AD     #FAILURES 

C     =IF(E2=2,W2, IF(E3>1,W2,     Shows ERO total parts costs 

")) 

C     = 

c   =: 

=IF(B2=B1,V2+V1,V2) 

=IF(E3=2,Y2," ") 

D    Numeric (3) 

D    Numeric (3) 

C     =IF(E3>1,1,0) 

C     =IF(E3=1,H2+1,1) 

adjacent only to the last record 

for each unique ERO number. 

Blank space otherwise. 

Accumulates parts costs for each 

unique serial number 

Shows vehicle total parts costs 

adjacent only to the last record 

for each unique serial number. 

Quantity of the part being 

ordered. 

Echelon of repairs; level of 

maintenance 

First step of a counter used to 

accumulate the number of critical 

failures recorded for a unique 

serial number. Value of "1" is a 

placeholder to start the count. 

Accumulates the number of 

failures for a serial number. 

* Syntax for the "IF" statement in Microsoft Excel is: "=IF(condition, then_, else_)." Nested 

IF statements imply a boolean "AND" relationship for the criteria specified 
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APPENDIX B. DATA ANALYSIS RESULTS 

A. GRAPHICAL FAILURE PLOT 

Chapter IV introduced the concept of trend testing in reliability analysis. Failure plotting 

is one of the methods described to evaluate the material condition of a complex repairable system 

Figure Al provides a graphical representation of the trends in the failure patterns of the actual 

data presented in Chapter V. All 32 vehicle data sets are not shown, rather a sample of four 

representative HMMVW serial numbers to illustrate the general appearance of the curves. 

5000   10000   15000  20000  25000  30000  35000  40000 

Miles 

_, 545199 ... A... 545023 .545131  * 545152 

Figure 4.1 Cumulative Failure Mileage for Four HMMWVs 
(four vehicle serial numbeis are shown) 

B. SYSTEM FAILURE DATA 

The data below represent to total time to system failure for each of the vehicles analyzed 

in the case study. It was obtained by identifying vehicles that had six or more recorded failures 

in the data sample. For each vehicle that met this criteria, their mileages were copied into the 

MLE estimation worksheet presented in the next section. 
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Serial numbers are bold followed by the mileages at failure: 

535199      535212       535393       537144       537290       537340       545191       537415 

15649 9890 18312 9632 9974 13493 2929 6545 

17214 12012 17212 12292 11200 13561 7042 9781 

18337 12331 20097 13478 9875 17139 7043 12166 

19524 12035 21454 13479 13837 17738 7732 12184 

19527 15266 22563 15652 19899 18154 8471 12714 

20713 15937 24317 13920 18304 14627 

21712 17330 25682 13920 

16334 

17579 

18480 18130 

537463       537526       537561       537563       537564       545002       545092       545023 

9679 10379 1786 7900 15668 15470 3256 11764 

9707 12810 9105 14297 15670 17225 9374 17666 

10102 15488 9117 20054 17456 17225 16015 18170 

10135 21772 9195 22739 18476 19813 18779 27601 

13175 24767 9970 31053 18876 20129 23007 29330 

29756 24861 13445 34280 22454 20224 54632 31966 

30150 39725 22655 

34092 

33330 

35322 

545025 545066 

4837 

545131 

18134 

545143 545152 535200 545037 535204 

27835 8943 26566 13462 11002 21094 

28469 17370 19946 14446 27394 17603 11520 21099 

29105 19239 21872 15182 30445 17603 12173 21261 

29173 20174 22418 16324 30571 18248 15897 23462 

29272 21038 22817 16479 31289 19709 19183 23453 

21038 26301 26294 17008 19820 27305 

32766 26301 

26302 

30654 

535205 535209 

12787 

535210 

16184 

535211 536300 536493 537567 536504 

17030 12584 6458 9572 12417 9100 

18638 16691 16193 12383 9354 11468 14058 1288 

18846 19005 17234 13421 9393 12767 15376 12235 

19163 19722 17695 14060 9950 13193 16096 16753 

19269 21818 17989 16901 10274 14428 16402 17002 

20724 22029 19289 16909 14896 

17270 

24689 18168 
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537384 537400 537497 

17763 19801 14306 

19670 20000 16891 

24108 24039 17738 

24733 25163 17935 

24797 26742 18510 

27009 

G   MLE ESTIMATION WORKSHEET 

The next page contains an extract of the MLE estimation worksheet used to for the data 

shown above. Prior to copying the TTSFj data into the MLE worksheet, the TTSFjS were sorted 

in ascending order to properly reflect mileages that increase. Reasons for the data being in non- 

sorted sequence stems from the fact that the source database was sorted by serial number, then 

date-received-in-shop, then date closed, prior to the analysis. For this reason, some of the 

mileages appear out of sequence in the raw data 

Subtotals for the various columns appear below the cells for each serial number, grand 

totals for the subtotal rows appear in the upper left comer of the spreadsheet. Values for the 

individual vehicle MLEs ß and X as well as the LaPlace test statistic based on equations (2-12), 

(2-13) and (2-9), respectively appear in the boxes for each system. The pooled MLEs appear in 

the box at the top of the spreadsheet, and are based on equations (2-12) and (2-13). Only 

calculations for the first two vehicles are shown. 
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D. SIMULATION OUTPUT 

The following pages contain the simulation output generated by the "Crystal Ball" 

software. The assumption cells are input variables that represent the costs, mileage and labor hour 

calculations used in the cost model. The forecasts are shown as probability distributions of the 

resulting equations. 
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Simulation Forecasts 

Forecast: NPV Do-nothing cost-stream over 14 year period 

Summary: 

Display Range is from -800,000 to 0 

Entire Range is from -2,902,079 to -1,862 

After 1,005 Trials, the Std. Error of the Mean is 7,663 

Statistics: 

Trials 

Mean 

Median (approx.) 

Mode (approx.) 

Standard Deviation 
Variance 

Skewness 

Kurtosis 

Coeff. of Variability 

Range Minimum 
Range Maximum 

Range Width 
Mean Std. Error 

Value 

1005 

-106,633 

-28,200 

-16,363 

241,781 

5.85E+10 

-5.11 

38.05 

-2.27 
-2,902,079 

-1,862 
2,900,217 

7,626.74 

Cell B34 
.192 -r 

.144 

.096 
(0 
.a 
o 
>    .048 J 

.000 

-800,000 

Forecast: NPV Do nothing 

Frequency Chart 

[Mean = -106,6331, 
• —' "«■ '"HI 

-600,000 -400,000 -200,000 

974 Trials Shown i 
187 

140 
-n 
n 

93.5  ja c n a 
46.7   Q 
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Forecast: NPV 1994 plan 

Summary: 
Display Range is from -110,000 to -20,000 

Entire Range is from -138,080 to -27,503 

After 1,005 Trials, the Std. Error of the Mean is 656 

Statistics: 

Trials 

Mean 

Median (approx.) 

Mode (approx.) 

Standard Deviation 

Variance 

Skewness 

Kurtosis 
Coeff. of Variability 

Range Minimum 

Range Maximum 

Range Width 

Mean Std. Error 

Value 
1005 

-54,192 

-47,675 

-40,220 

20,705 
4.29E+08 

-1.53 
5.14 

-0.38 

-138,080 

-27,503 

110,576 

653.11 

Cell B38 
.036 -r 

.027 

H 

O 

.018 

.009 

.000 

Forecast: NPV 1994 plan 

Frequency Chart 974 Trials Shown 
-,. 35 

. 26.2 
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Forecast: NPV 1996 plan 

Summary: 

Display Range is from -100,000 to -30,000 

Entire Range is from -112,617 to -31,256 

After 1,005 Trials, the Std. Error of the Mean is 481 

Statistics: 

Trials 

Mean 

Median (approx.) 

Mode (approx.) 

Standard Deviation 
Variance 

Skewness 
Kurtosis 

Coeff. of Variability 

Range Minimum 

Range Maximum 

Range Width 
Mean Std. Error 

Value 
1005 

-51,234 

-46,498 

-38,172 

15,169 

2.30E+08 

-1.52 

5.13 
-0.30 

-112,617 

-31,256 

81,362 

478.49 

Cell B42 
.039   -r 

.030 J. 

Forecast: NPV 1996 plan 

Frequency Chart 990 Trials Shown i 
 :.   39 j 

29.2 

19.5 
n 

I 9.75  Q 

L 0 
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Forecast: NPV 1997 plan 

Summary: 
Display Range is from -85,000 to -30,000 

Entire Range is from -102,161 to -33,339 

After 1,005 Trials, the Std. Error of the Mean is 406 

Statistics: 

Trials 

Mean 

Median (approx.) 

Mode (approx.) 

Standard Deviation 

Variance 

Skewness 

Kurtosis 

Coeff. of Variability 

Range Minimum 
Range Maximum 
Range Width 
Mean Std. Error 

Value 

1005 

-50,429 

-46,448 

-44,694 

12,797 

1.64E+08 

-1.52 

5.12 

-0.25 

-102,161 
-33,339 
68,822 

403.66 

Cell B46 
.035 ,- 

.026 

«0 .a 
o 

.017 

.009 

.000 

Forecast: NPV 1997 plan 

Frequency Chart 974 Trials Shown i 
34 j 

i 

► 
-85.000 

.i.J.l.i.iliillihil.ii..illiilliBlillllilil 
-71,250 -57,500 43,750 
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Forecast: Optimum Overhaul Interval (miles) 

Summary: 

Display Range is from 0 to 450,000 

Entire Range is from 19,340 to 846,974 

After 1,005 Trials, the Std. Error of the Mean is 3,837 

Statistics: 

Trials 

Mean 

Median (approx.) 

Mode (approx.) 

Standard Deviation 
Variance 

Skewness 
Kurtosis 
Coeff. of Variability 

Range Minimum 

Range Maximum 

Range Width 

Mean Std. Error 

Value 
1005 

129,496 

89,689 

56,583 

121,078 

1.47E+10 
2.50 

10.84 
0.93 

19,340 
846,974 

827,635 

3,819.29 

Cell H5 
.043 

.032 

N 
ja a 

.022 

.011 

.000 

Forecast: Optimum Overhaul Interval 

Frequency Chart 971 Trials Shown 
 :- 42 

31.5 

31   I n   I 
xa   l 
c 
CD 

- 10.5   ^ 

112,500 225.000 337,500 

93 



Forecast: Life Expectancy (from present) 

Summary: 
Display Range is from 4.0 to 14.0 

Entire Range is from 4.5 to 24.7 
After 1,005 Trials, the Std. Error of the Mean is 0. 

Statistics: 
Trials 

Mean 
Median (approx.) 

Mode (approx.) 

Standard Deviation 

Variance 

Skewness 

Kurtosis 

Coeff. of Variability 

Range Minimum 
Range Maximum 

Range Width 
Mean Std. Error 

Value 

1005 

7.5 

7.0 

6.9 

2.1 

4.6 

2.37 

12.67 

0.28 
4.5 

24.7 

20.2 

0.07 

Cell H8 
.040 

«0 
■a o 

.030 1 

.020 

.010 

.000 

Forecast: Life Expectancy (from present) 

Frequency Chart 

► 
4.0 

llllUllL.llI   ■■■—■■ 
6.5 9.0 11.5 

985 Trials Shown i 
    39 

29.2 

n   i 
. 19.5 

C n 
3 

. 9.75   ^ 

i 
14.0 
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Assumptions About Input Variables 

Assumption: Annual Mileage 

Lognormal distribution with parameters: 

Mean 6,970 

Standard Dev. 7,650 

Selected range is from 500 to 25,000 

Mean value in simulation was 5,882 

Annual Mileage 

326 17,147 33,968 50,788 67,609 

Assumption: CM Cost Per ERO 

Triangular distribution with parameters: 

Minimum $50.00 

Likeliest $982.00 

Maximum $2,379.00 

Selected range is from $50.00 to $2,379.00 

Mean value in simulation was $1,128.26 

CH Coit Par ERO 

»60.00 9632.25 »1,214.60 »1,796.76 »2,379.00 
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Assumption: Labor Hours/ERO 

Triangular distribution with parameters: 

Minimum 1-00 

Likeliest 7.03 

Maximum 16.60 

Selected range is from 1.00 to 16.60 

Mean value in simulation was 8.12 

Labor Hours/ERO 

Assumption: Sched Maint Costs 

Triangular distribution with parameters: 
Minimum $60.00 

Likeliest $82.00 

Maximum $100.00 

Selected range is from $60.00 to $100.00 

Mean value in simulation was $80.42 

SchadMalnt Costs 

»90.00 
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Assumption: Sched PM labor hours 

Lognormal distribution with parameters: 

Mean 1.81 

Standard Dev. 1.45 

Selected range is from 1.00 to 11.00 

Mean value in simulation was 2.32 

Sched PM labor hour« 

0.17 3.05 5.92 8.80 11.68 

Assumption: Hourly Wage Rate 

Triangular distribution with parameters: 
Minimum $10.29 
Likeliest $11.84 
Maximum $14.46 

Selected range is from $10.29 to $14.46 
Mean value in simulation was $12.16 

Hourly Wage Rate 

»10.29 $11.33 $12.38 $13.42 $14.46 
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Assumption: b hat 

Triangular distribution with parameters: 
Minimum 1.39 
Likeliest 1.60 
Maximum 1.81 

Selected range is from 1.39 to 1.81 
Mean value in simulation was 1.60 

bhat 

Assumption: Overhaul Cost 

Uniform distribution with parameters: 
Minimum $23,400 
Maximum $30,600 

Mean value in simulation was $26,981 

Ovwtiaul Cost 

«23.400 »25.200 »27.000 «28.800 »30.600 
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APPENDIX C PARETO ANALYSIS OF PARTS USAGE 

A PURPOSE 

This Appendix provides the results of the Pareto analysis of the HMMWV parts usage for 

the entire database sample. Only the first 55 items are shown, the remaining parts consists of less 

than 0.3% of the total usage over the 54 month sample period. Percentages reflect parts usage, 

i.e., as a percentage of the total demand quantity, not costs. 

The purpose of the Pareto analysis was to establish that the HMMWV is a sufficiently 

complex system, such that no single item contributes to the majority of the system failures. In 

the author's opinion, the one questionable item (glow plugs) that amounts to sixteen percent of the 

total usage was most likely attributable to Operation Desert Storm The sandy, dusty environment, 

coupled with the fact that JP-5 aviation fuel was used in the HMMWVs caused widespread fuel 

injector clogging. Many Marine units began replacing fuel injectors on a preventative basis. The 

fuel injector problem was mainly isolated to Desert Storm usage. 

The low percentages for the remaining parts indicates that none of the rest of the parts 

contribute to a significant amount of the usage, therefore it is assumed that the HMMWV is 

sufficiently complex to use the model presented in this thesis. 

PART NAME TOTAL COST % USAGE CUML% QTY 
Total Sum of PARTCOST $761,926 7281 
GLOW PLUG 768.40 16.26% 16.26% 1184A 
LAMP,INCANDESCENT 4,343.35 7.03% 23.29% 512 A 
TIRE,PNEUMATIC 24,001.00 6.32% 29.61% 460 A 
BATTERY,STORAGE 10,414.04 5.10% 34.71% 371 A 
DISK BRAKE SHOE 333.60 2.84% 37.55% 207 A 
PARTS KIT,BALL JOIN 2,584.27 2.82% 40.37% 205 B 
PACKINGPREFORMED 172.64 2.79% 43.15% 203 B 
TIE ROD END,STEERIN 3,901.49 2.61% 45.76% 190 B 
STARTERENGINE,ELEC 54,096.00 2.31% 48.07% 168 B 
ROTORDISC BRAKE 1,335.96 2.05% 50.12% 149 B 
OJSHION,SEAT,VEHICU 3,698.15 1.91% 52.03% 139 B 
COIL,ELECTRICAL 3,594.50 1.90% 53.92% 138 B 
NOZZLEJTJELINJECTI 641.52 1.88% 55.80% 137 B 
PARTS KIT,HAND BRAK 2308.26 1.73% 57.53% 126 B 
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PART NAME TOTAL COST % USAGE CUML %      QTY 

TERMNAL.LUG 83.16 1.68% 59.21% 122 B 

CONTROL.REMOTE SWIT 12,154.00 1.65% 60.86% 120 C 

CUSHION,SEAT BACK,V 2,012.05 1.59% 62.45% 116C 

LUBRICANT,RUN FLAT 78.05 1.51% 63.96% HOC 

FILTERFLUID 151.51 1.50% 65.46% 109 C 

SEAL,NONMETALLIC SP 229.32 1.44% 66.90% 105 C 

STEERING GEAR 9,135.00 1.19% 68.10% 87 C 

PUMP ASSEMBLY,POWER 3,417.85 1.17% 69.26% 85 C 

MOTOR WINDSHIELD WI 19,690.92 1.15% 70.42% 84C 

GLASS,LAMINATED 1,071.33 1.14% 71.56% 83 C 

FLYWHEEL,ENGINE 1,771.45 0.99% 72.54% 72 C 

MIRROR ASSEMBLY,REA 3,703.65 0.96% 73.51% 70 C 

HOSEAIR DUCT 221.75 0.96% 74.47% 70 C 

CONTROL ASSEMBLYPU 1,177.64 0.93% 75.40% 68 C 

BLADE, WINDSHIELD WI 139.20 0.93% 76.34% 68 C 

BELTS,V,MATCHED SET 347.17 0.87% 77.20% 63 C 

SCREWSELF-LOCKING 9.20 0.84% 78.04% 61 C 

CLAMP,HOSE 7.26 0.84% 78.88% 61 C 

PUMP,FUEL,METERING 31,980.00 0.82% 79.70% 60 C 

TRANSFER TRANSMSSI 63,189.00 0.81% 80.51% 59 C 

SPRING,HELICAL,TORS 29.40 0.76% 81.27% 55 C 

TRANSMSSIONHYDRAU 103,356.00 0.74% 82.01% 54 C 

FILTER ELEMENT,INTA 834.36 0.70% 82.71% 51 C 

GASKET 35.59 0.69% 83.40% 50 C 

VALVE,PNEUMATIC TER. 4.80 0.67% 84.07% 49 C 

SWITCHTHERMOSTATIC 1,041.55 0.65% 84.71% 47 C 

NUT,SELF-LOCKING,HE 8.14 0.58% 85.29% 42 C 

IMPETLERFAN, AXIAL 7,585.00 0.56% 85.85% 41 C 

HOOD,ENGINE COMPART 14,782.00 0.52% 86.38% 38 C 

HORN,ELECTRICAL 882.08 0.51% 86.88% 37 C 

INSTALLATION AND EQ 180.38 0.47% 87.35% 34 C 

HOSEPREFORMED 124.00 0.45% 87.80% 33 C 

SCREW,CAP,HEXAGON H 44.06 0.41% 88.22% 30 C 

FiriING,LUBRICATION 0.75 0.41% 88.63% 30 C 

ENGINE,DIESEL 170,404.00 0.40% 89.03% 29 C 

HALFSHAFT ASSEMBLY 3,008.00 0.40% 89.42% 29 C 

SWITCH,SAFETY,NEUTR 437.67 0.37% 89.80% 27 C 

SHROUD,FAN,RADIATOR 880.36 0.36% 90.15% 26 C 

PARTS KIT,UNrVERSAL 216.10 0.36% 90.51% 26 C 

STRKE,CATCH 5.76 0.36% 90.87% 26 C 
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